Gallium (III)-acetate speciation studies under physiological conditions.

Brahim HACHT

Abstract


This paper describes an experimental investigation in aqueous solution of the equilibria between gallium (III) metal ions and acetate ions as a model of low-molecular-weight ligand using potentiometric techniques under physiological conditions of temperature 37 °C and ionic strength 0.15 mol.dm-3 NaCl. Potentiometric measurements were monitored with the help of a glass electrode calibrated daily in hydrogen ions concentrations. Several metal to ligand ratios were used and the respective titrations data obtained in the pH range of 2.3-5.3 were treated using the SUPERQUAD computer program to determine global stability constants. Different species were considered during the calculation procedure and the following hydroxides have been characterized: ,  and coexist with one mononuclear complex Ga(CH3COO)+2. Speciation calculations based on the determined constants were then used to simulate the species distribution as a function of pH.

Keywords


gallium (III), acetate, speciation, global stability constants, potentiometric titrations, physiological conditions.

Full Text:

PDF

References


Pearson R. Hard and soft acids and bases. Chem Brit. 1967;3:103-7.

Jakupec MA, Galanski M, Arion VB, Hartinger CG, Keppler BK. Antitumour metal compounds: more than theme and variations. Dalton transactions. 2008;2:183-94. DOI: 10.1039/b712656p.

Sun Y, Anderson CJ, Pajeau TS, Reichert DE, Hancock RD, Motekaitis RJ, et al. Indium (III) and gallium (III) complexes of bis(aminoethanethiol) ligands with different denticities: stabilities, molecular modeling, and in vivo behavior. Journal of medicinal chemistry. 1996;39(2):458-70. DOI: 10.1021/jm9505977.

Green MA, Welch MJ. Gallium radiopharmaceutical chemistry. International journal of radiation applications and instrumentation Part B, Nuclear medicine and biology. 1989;16(5):435-48. DOI: 10.1016/0883-2897(89)90053-6.

Chaniotakis NA, Alifragis Y, Konstantinidis G, Georgakilas A. Gallium nitride-based potentiometric anion sensor. Analytical chemistry. 2004;76(18):5552-6. DOI: 10.1021/ac049476h.

Kubicek V, Havlickova J, Kotek J, Tircso G, Hermann P, Toth E, et al. Gallium(III) complexes of DOTA and DOTA-monoamide: kinetic and thermodynamic studies. Inorganic chemistry. 2010;49(23):10960-9. DOI: 10.1021/ic101378s.

Aldridge S, J. Downs A. The Group 13 Metals Aluminium, Gallium, Indium and Thallium: Chemical Patterns and Peculiarities. John Wiley & Sons, Ltd. 2011:726.

Enyedy EA, Domotor O, Varga E, Kiss T, Trondl R, Hartinger CG, et al. Comparative solution equilibrium studies of anticancer gallium(III) complexes of 8-hydroxyquinoline and hydroxy(thio)pyrone ligands. Journal of inorganic biochemistry. 2012;117:189-97. DOI: 10.1016/j.jinorgbio.2012.08.005.

Ghosh S, Gowda RR, Jagan R, Chakraborty D. Gallium and indium complexes containing the bis(imino)phenoxide ligand: synthesis, structural characterization and polymerization studies. Dalton transactions. 2015;44(22):10410-22. DOI: 10.1039/c5dt00811e.

Shannon R. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A. 1976;32(5):751-67. DOI: 10.1107/S0567739476001551.

Frangipani E, Bonchi C, Minandri F, Imperi F, Visca P. Pyochelin Potentiates the Inhibitory Activity of Gallium on Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy. 2014;58(9):5572-5. DOI: 10.1128/AAC.03154-14.

Bernstein LR. Mechanisms of therapeutic activity for gallium. Pharmacological reviews. 1998;50(4):665-82.

Arion VB, Jakupec MA, Galanski M, Unfried P, Keppler BK. Synthesis, structure, spectroscopic and in vitro antitumour studies of a novel gallium(III) complex with 2-acetylpyridine (4)N-dimethylthiosemicarbazone. Journal of inorganic biochemistry. 2002;91(1):298-305. DOI:10.1016/S0162-34(02)00419-1.

Anderson CJ, Welch MJ. Radiometal-labeled agents (non-technetium) for diagnostic imaging. Chemical reviews. 1999;99(9):2219-34.

Bradley SM, Kydd RA, Yamdagni R. Comparison of the hydrolyses of gallium(III) and aluminium(III) solutions by nuclear magnetic resonance spectroscopy. Journal of the Chemical Society, Dalton Transactions. 1990;9:2653-6. DOI: 10.1039/DT9900002653.

Bradley SM, Kydd RA. Comparison of the species formed upon base hydrolyses of gallium(III) and iron(III) aqueous solutions: the possibility of existence of an [FeO4Fe12(OH)24(H2O)12]7+ Polyoxocation. Journal of the Chemical Society, Dalton Transactions. 1993;15:2407-13. DOI: 10.1039/DT9930002407.

Michot LJ, Montargès-Pelletier E, Lartiges BS, d'Espinose de la Caillerie J-B, Briois V. Formation Mechanism of the Ga13 Keggin Ion: A Combined EXAFS and NMR Study. Journal of the American Chemical Society. 2000;122(25):6048-56. DOI: 10.1021/ja9941429.

Wood SA, Samson IM. The aqueous geochemistry of gallium, germanium, indium and scandium. Ore Geology Reviews. 2006;28(1):57-102. DOI: 10.1016/j.oregeorev.2003.06.002.

Baes J, C.F., Mesmer RE. The Hydrolysis of Cations. Krieger Publishing Company, Malabar, Florida. 1986:489.

Hacht B. Gallium(III) Ion Hydrolysis under Physiological Conditions. Bulletin of the Korean Chemical Society 2008;29(2).

Radin NS, Rittenberg D, Shemin D. The role of acetic acid in the biosynthesis of heme. Journal of Biological Chemistry. 1950;184(2):755-68.

Lectures N. Physiology or Medicine 1963–1970. Elsevier, Amsterdam. 1972.

Berthon G. Handbook of Metal-Ligand Interactions in Biological Fluids; Bioinorganic Chemistry. Dekker, New York. 1995;vols. 1-2.

Berthon G. Handbook of Metal-Ligand Interactions in Biological Fluids; Bioinorganic Chemistry. Dekker, New York. 1995;vol. 2., Part 5.

Schwarzenbach G. Complexometric Titrations. Metuhen and Co, London. 1957.

Rossotti H. The Study of Ionic Equilibria. Longman, London. 1978.

Linder PW, Torrington RG, Williams DR. Analysis Using Glass Electrodes. . Open University Press, Milton Keynes. 1984.

Gans P, Sabatini A, Vacca A. SUPERQUAD: an improved general program for computation of formation constants from potentiometric data. Journal of the Chemical Society, Dalton Transactions. 1985;6:1195-200. DOI: 10.039/DT9850001195.

Hacht B. Complex Formation of Acetic Acid with Ca(II) and Mg(II) Under Physiological Conditions. Journal of Solution Chemistry. 2007;37(2):155-63. DOI: 10.1007/s10953-007-9233-3.

Hacht B. Speciation studies of aluminium(III)-acetate complexes under physiological conditions. Chemical Speciation and Bioavailability. 2008;20(4):207-15. DOI: 10.3184/095422908X379282.

Corrie AM, Makar GKR, Touche MLD, Williams DR. Thermodynamic considerations in co-ordination. Part XX. A computerised approach as an alternative to graphical normalised curve fitting as a means of detecting oligonuclear complexes in metal ion-ligand solutions and its application to the zinc(II)-, lead (II)-, and proton-glycine peptide systems. Journal of the Chemical Society, Dalton Transactions. 1975;2:105-10. DOI: 10.1039/DT9750000105.

Hacht B. Simdis. unpublished programm. 1997.

Hacht B, Berthon G. Metal ion-FTS nonapeptide interactions. A quantitative study of zinc(II)-nonapeptide complexes (thymulin) under physiological conditions and assessment of their biological significance. Inorganica Chimica Acta. 1987;136(3):165-71.

Berthon G. Chemical speciation studies in relation to aluminium metabolism and toxicity. Coord Chem Rev. 1996;149:241-80. DOI:10.1016/S0010-8545(96)90030-2.

Berthon G, Hacht B, Blais M-J, May PM. Copper-histidine ternary complex equilibria with glutamine, asparagine and serine. The implications for computer-simulated distributions of copper(II) in blood plasma. Inorganica Chimica Acta. 1986;125(4):219-27. DOI: 10.1016/S0020-1693(00)81215-3.

Venturini M, Berthon G. Aluminium speciation studies in biological fluids. A new investigation of aluminium hydroxide equilibria under physiological conditions. Journal of the Chemical Society, Dalton Transactions. 1987;5:1145-8. DOI: 10.039/DT9870001145.

van Gaans PFM. Thermodynamics of aqueous gallium chloride: Activity coefficients in dilute and high chloride solutions with consideration of the effects of hydrolysis and chloride complex formation. Chemical Geology. 1993;104(1–4):139-57. DOI: 10.1016/0009-2541(93)90147-B.




DOI: https://doi.org/10.23954/osj.v1i1.97

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Open Science Journal (OSJ) is multidisciplinary Open Access journal. We accept scientifically rigorous research, regardless of novelty. OSJ broad scope provides a platform to publish original research in all areas of sciences, including interdisciplinary and replication studies as well as negative results.