Review of Current Methods for Re-Identification in Computer Vision.
Abstract
Keywords
Full Text:
PDFReferences
Allouch, A. 2010. People re-identification across a camera network. Master’s thesis in computer science at the school of computer science and engineering royal institute of technology, Stockholm, Sweden,
Cong, T., Achard, C., Khoudour, L. and Douadi, L. 2009. Video sequences association for people re-identification across multiple non-overlapping cameras. Proc. Int. Conf. Image Analysis and Processing (ICIAP), Vietri Sul Mare, Italy, 179–189. DOI: https://doi.org/10.1007/978-3-642-04146-4_21
Guermazi, R., Hammami, M. and Hama, A.B. 2009. Violent web images classification based on MPEG7 color descriptors. Proc. IEEE Int. Conf. Systems Man and Cybernetics, San Antonio, USA, October 2009, 3106–3111. DOI: 10.1109/ICSMC.2009.5346149
Saghafi, M. A., Zaman, H. B., Saad, M. H., and Hussain, A. 2014. Review of person re-identification techniques. IET Computer Vision,8(6), 455-474. DOI:10.1049/iet-cvi.2013.0180
M. J. Lyons, J. Budynek and S. Akamatsu, 1999. "Automatic classification of single facial images," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 21, no. 12, 1357-1362. DOI: 10.1109/34.817413
Zhao, C., Chen, K., Wei, Z., Chen, Y., Miao, D., and Wang, W. 2019. Multilevel triplet deep learning model for person re-identification. Pattern Recognition Letters. 117, 161-168, DOI.org/10.1016/j.patrec.2018.04.029.
Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., and Tian, Q. 2015. Scalable Person Re-identification: A Benchmark. 2015 IEEE International Conference on Computer Vision (ICCV). DOI:10.1109/iccv.2015.133
Li, W., Zhao, R., Xiao, T., and Wang, X. 2014. DeepReID: Deep Filter Pairing Neural Network for Person Re-identification. 2014 IEEE Conference on Computer Vision and Pattern Recognition. DOI:10.1109/cvpr.2014.27
Li, W., Zhao, R., and Wang, X. 2013. Human Reidentification with Transferred Metric Learning. Computer Vision – ACCV 2012 Lecture Notes in Computer Science, 31-44. DOI:10.1007/978-3-642-37331-2_3
Li, W., and Wang, X. 2013. Locally Aligned Feature Transforms across Views. 2013 IEEE Conference on Computer Vision and Pattern Recognition. DOI:10.1109/cvpr.2013.461
Van Beeck K., Van Engeland K., Vennekens J., and Goedemé T. 2017. Abnormal Behavior Detection in LWIR Surveillance of Railway Platforms. Proceedings of the 14th IEEE International Conference on Advanced Video and Signal based Surveillance (AVSS). DOI: 10.1109/AVSS.2017.8078540
Zheng, L., Zhang, H., Sun, S., Chandraker, M., Yang, Y., and Tian, Q. 2017. Person Re-identification in the Wild. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). DOI:10.1109/cvpr.2017.357
Geiger, A., Lenz, P., Stiller, C., and Urtasun, R. 2013. Vision meets robotics: The KITTI dataset. The International Journal of Robotics Research, 32(11), 1231-1237. DOI:10.1177/0278364913491297
Das, Abir & Chakraborty, Anirban and K. Roy-Chowdhury, Amit. 2014. Consistent Re-identification in a Camera Network. DOI: 10.1007/978-3-319-10605-2_22.
Chavdarova, T., and Fleuret, F. (2017) Deep Multi-Camera People Detection. Proceedings of the IEEE International Conference on Machine Learning and Applications. arXiv:1702.04593v3 [cs.CV] Retrieved from https://arxiv.org/abs/1702.04593
Li, Y., Wu, Z., Karanam, S., and Radke, R. 2015. Multi-Shot Human Re-Identification Using Adaptive Fisher Discriminant Analysis. 73.1-73.12. DOI:10.5244/C.29.73.
Lin, Y., Zheng, L., Zheng, Z., Wu, Y., and Yang, Yi. (2017). Improving Person Re-identification by Attribute and Identity Learning. arXiv:1703.07220v2 [cs.CV] Retrieved from https://arxiv.org/abs/1703.07220
L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian. 2015. Scalable person re-identification: A benchmark. ICCV.
Hamdoun, O., Moutarde, F., Stanciulescu, B., and Steux, B. 2008. Interest points harvesting in video sequences for efficient person identification. Proc. Eighth Int. Workshop on Visual Surveillance, Marseille, France.
Zeng, G., Hu, H., Geng, Y., and Zhang, C. 2014. A person re-identification algorithm based on color topology, 2014 IEEE International Conference on Image Processing (ICIP), Paris, 2447-2451. DOI: 10.1109/ICIP.2014.7025495
Farenzena, M., Bazzani, L., Perina, A., Murino, V., and Cristani, M (2010) Person re-identification by symmetry-driven accumulation of local features. Proc. Int. Conf. Computer Vision and Pattern Recognition (CVPR) 2360–2367
Gheissari, N., Sebastian, T.B., Tu, P.H., Rittscher, J., and Hartley, R. 2006. Person re-identification using spatiotemporal appearance. 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06). 1528–1535. DOI: 10.1109/CVPR.2006.223
Schroff, Florian, Dmitry Kalenichenko, and James Philbin. 2105. Facenet: A unified embedding for face recognition and clustering. Proceedings of the IEEE conference on computer vision and pattern recognition. DOI: 10.1109/CVPR.2015.7298682
Luiten, J., Voigtlaender, P., and Leibe, B. 2019. PReMVOS: Proposal-Generation, Refinement and Merging for Video Object Segmentation. Computer Vision – ACCV 2018 Lecture Notes in Computer Science, 565-580. DOI:10.1007/978-3-030-20870-7_35
D’angelo, A., and Dugelay, J.L. 2011. People re-identification in camera networks based on probabilistic color histograms. Proc. Electronic Imaging Conf. 3D Image Processing (3DIP) and Applications, 23–27. DOI: 10.1117/12.876453
Xuan Zhang et al. AlignedReID: Surpassing Human-Level Performance in Person Re-Identification (2018). https://arxiv.org/abs/1711.08184 Retrieved from https://arxiv.org/abs/1711.08184
Rama Varior, Rahul & Haloi, Mrinal and Wang, Gang. 2016. Gated Siamese Convolutional Neural Network Architecture for Human Re-identification. 9912. 791-808. arXiv:1607.08378 [cs.CV] Retrieved from https://arxiv.org/abs/1607.08378
Cheng, D., Gong, Y., Zhou, S., Wang, J., and Zheng, N. 2016. Person Re-identification by Multi-Channel Parts-Based CNN with Improved Triplet Loss Function. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). DOI:10.1109/cvpr.2016.149
Krizhevsky, A., Sutskever, I., and Geoffrey, E. H. 2012. ImageNet Classification with Deep Convolutional Neural Networks. Neural Information Processing Systems. 25. 10.1145/3065386.
Girshick, R.B., Donahue, J., Darrell, T., and Malik, J. 2014. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. 2014 IEEE Conference on Computer Vision and Pattern Recognition, 580-587.
Marchwica, P., Jamieson, M., and Siva, P. 2018. An Evaluation of Deep CNN Baselines for Scene-Independent Person Re-identification. 2018 15th Conference on Computer and Robot Vision (CRV). DOI:10.1109/crv.2018.00049
Fan, H., Zheng, L., Yan, C., and Yang, Y. 2018. Unsupervised Person Re-identification. ACM Transactions on Multimedia Computing, Communications, and Applications,14(4), 1-18. DOI:10.1145/3243316
Droghini, D., Vesperini, F., Principi, E., Squartini, S., and Piazza, F. 2018. Few-Shot Siamese Neural Networks Employing Audio Features for Human-Fall Detection. Proceedings of the International Conference on Pattern Recognition and Artificial Intelligence - PRAI 2018. DOI:10.1145/3243250.3243268
Chung, D., Tahboub, K., and Delp, E. J. 2017. A Two Stream Siamese Convolutional Neural Network for Person Re-identification. 2017 IEEE International Conference on Computer Vision (ICCV). DOI:10.1109/iccv.2017.218
Liu, H., Feng, J., Qi, M., Jiang, J., and Yan, S.. 2017. End-to-end comparative attention networks for person re-identification. IEEE Transactions on Image Processing.
Chen, W., Chen, X., Zhang, J., and Huang, K..2017. Beyond triplet loss: a deep quadruplet network for person re-identification. arXiv:1704.01719 [cs.CV] Retrived from https://arxiv.org/abs/1704.01719
Hermans, A., Beyer, L., and Leibe, B.. 2017. In defense of the triplet loss for person re-identification. arXiv:1703.07737 [cs.CV] Retrieved from https://arxiv.org/abs/1703.07737
Z. Zhong, L. Zheng, D. Cao, and S. Li. Re-ranking person re-identification with k-reciprocal encoding. arXiv:1701.08398 [cs.CV] Retrieved from https://arxiv.org/abs/1701.08398
Chum, O., Philbin, J., Sivic , J., Isard, M., and Zisserman, A. 2007. Total recall: Automatic query expansion with a generative feature model for object retrieval. ICCV. DOI: 10.1109/ICCV.2007.4408891
Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., and Tian, Q. 2015. Scalable person re-identification: A benchmark. ICCV. DOI: 10.1109/ICCV.2015.133
Gray, D. and Tao, H. 2008. Viewpoint invariant pedestrian recognition with an ensemble of localized features. ECCV. DOI https://doi.org/10.1007/978-3-540-88682-2_21
Yuan, M., Yin, D., Ding, J., Zhou, Z., Zhu, C., Zhang, R. and Wang, A. 2019. A multi-image Joint Re-ranking framework with updateable Image Pool for person re-identification. Journal of Visual Communication and Image Representation,59, 527-536, DOI: https://doi.org/10.1016/j.jvcir.2019.01.041.
Li, Z., Han, Z., Xing, J., Ye, Q., Yu, X., and Jiao, J. 2019. High performance person re-identification via a boosting ranking ensemble. Pattern Recognition, 94, 187-195, DOI:https://doi.org/10.1016/j.patcog.2019.05.022.
Li, M., Zhu, X., and Gong, S. 2019. Unsupervised Tracklet Person Re-Identification. IEEE Transactions on Pattern Analysis and Machine Intelligence. doi: 10.1109/TPAMI.2019.2903058
Lisanti, G., Martinel, N., Micheloni, C., Bimbo, A. D., and Foresti, G. L. 2019. From person to group re-identification via unsupervised transfer of sparse features. Image and Vision Computing,83-84, 29-38. DOI:10.1016/j.imavis.2019.02.009
Ye, M., Li, J., Ma, A. J., Zheng, L., and Yuen, P. C. 2019. Dynamic Graph Co-Matching for Unsupervised Video-Based Person Re-Identification. IEEE Transactions on Image Processing,28(6), 2976-2990. DOI:10.1109/tip.2019.2893066
Lin, Y., Zheng, L., Zheng, Z., Wu, Y., Hu, Z., Yan, C., & Yang, Y. 2019. Improving Person Re-identification by Attribute and Identity Learning. Pattern Recognition. DOI:10.1016/j.patcog.2019.06.006
Layne, R., Hospedales, T., & Gong, S. (2014). Re-id: Hunting Attributes in the Wild. Proceedings of the British Machine Vision Conference 2014. doi:10.5244/c.28.1
Yu, H., Zheng, W., Wu, A., Guo, X., Gong, S., Lai, J. 2019. Unsupervised Person Re-identification by Soft Multilabel Learning.
arXiv:1903.06325 [cs.CV]. Retrieved From https://arxiv.org/abs/1903.06325
DOI: https://doi.org/10.23954/osj.v4i1.2141
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Science Journal (OSJ) is multidisciplinary Open Access journal. We accept scientifically rigorous research, regardless of novelty. OSJ broad scope provides a platform to publish original research in all areas of sciences, including interdisciplinary and replication studies as well as negative results.