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Abstract

From the measurements of the anisotropies of the cosmic background radiation at the
present time, we get a value for the density parameter (Ω(t)) near to unit, i.e. Ω(t) ∼ 1.

The value of the density parameter determines if the Universe is open (Ω(t) < 1), flat
(Ω(t) = 1) or closed (Ω(t) > 1)). This result forces us to assume that the boundary of the
Universe is a 2D flat space, i.e. the R2, since its interior is a 3D space as we conceive it.

The R2 space is characterized by isotropy and homogeneity. It is a simply connected
space and that it does not exhibit any particular characteristic anywhere. These attributes
are expressed by a circle of an infinite radius in the center of which is an observer, at every
point in the Universe.

Since circle is the geometric object from which all other conic sections produced, then we
shall examine the equations that characterize them and the consequences of their mappings
in the interior of the Universe through one to one correspondences.

Keywords: conic sections, affine connections, differential manifold
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1 Definition of a differential manifold

In this paper, the general relations that determine conic sections in a curved differential
manifold M is applied by observers of the 3D space (free observers). From this process, they
will find equations of the same form as Einstein’s equations of general relativity, without using
the principle of equivalence. So, those equations, free from the equivalence principle, are used
in all regions of physics and not only to gravity.

In the founding of Classical Mechanics (Krikos, 2019) it was referred that a point circle
of R2 is depicted as a material point in 3D space generating a local anisotropy in its neigh-
borhood, due to the mass attributed to it. In other words, the neighborhood of this material
point exhibits curvature. In order to calculate the various physical quantities, a coordinate
system that is only locally approached by a Cartesian coordinate system should be defined.

If a second material point located in the neighborhood of the first, with a different mass
from that of the first, correlates with the first one. In the case of Classical Mechanics it
was considered that 3D space does not change its basic characteristics, that is, that it is still
isotropic and homogeneous. The second material point creates its own neighborhood in which
also a curvature, other than that of the neighborhood of the first material point, is displayed.
Thus a different coordinate system other than the coordinate system of first material point,
is required, in order to calculate the different physical quantities in this neighborhood. Since
these two material points are correlated, then this correlation should be expressed through
the correlations of both coordinate systems.

A collection of such material points defines a differential manifold M whose basic char-
acteristic is that it is covered by a set of coordinate neighborhoods that each neighborhood
has the same number of coordinates as each other. The basic property of two different coor-
dinate systems is that in a common region they are related to a differentiable transformation
of a class not less than 1. (Willmore, 2012)

2 Equations of conic sections in a differential manifold

The following relations

L = ∇× v (2.1)

R = ∇× L−∇(
k

r
) (2.2)

are the relations through which vector fields L and R are defined on a 3D space, leading
to Maxwell’s equations in vacuum (Krikos, 2018). These relations will be generalized, writing
them as relations between differential forms. The reason we make this generalization is to
find their expressions on a flat 3D space, and then to have them transferred to a curved 3D
differential manifold. From the general definition of the grad and the curl (William Schulz
and Alexia Schulz, 2012), we get

curl = Φ−1 ◦ ? ◦ d ◦ Φ

grad = Φ−1 ◦ d
The symbol ◦ denotes the composition of quantities d,Φ, ?. The symbol ? is an opera-

tor (Hodge star operator). The quantities d,Φ, ? and their compositions, that are expressed
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through curl and grad, are independent of the choice of coordinate systems. We write rela-
tions (2.1), (2.2) as follows:

L = curl(v)

R = curl(L) + grad(Φ̃)

According to the definitions of curl, grad, we get

L = Φ−1 ? dΦ(v)

R = Φ−1 ? dΦ(L) + Φ−1d(Φ̃)

where Φ̃ = −k
r belongs to Λ0(R3), and Λ0(R3) is the set of all functions of R3. We act

on the two members of the above relations from the left, with the function Φ, so we get

Φ(L) = ?dΦ(v)

Φ(R) = ?dΦ(L) + d(Φ̃)

We act from the left, with the operator ? on the above relations, so we get

?Φ(L) = ? ? dΦ(v)

?Φ(R) = ? ? dΦ(L) + ?d(Φ̃)

From the general relation

? ? ω = (−1)r(n−r)ω, with ω belongs to Λr(V ∗)

where ω = dΦ(v), n is the dimensions of V ∗ and the dΦ(v) belongs to the set Λ2(R3),
we get

?Φ(L) = dΦ(v)

?Φ(R) = dΦ(L) + ?d(Φ̃)

We define the forms

L = ?Φ(L), R = ?Φ(R), D̃ = ?d(Φ̃)

u = Φ(v), V = Φ(L)

From the above definitions, relations (2.1), (2.2) are written through differential forms,
as

L = du (2.3)
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R = dV + D̃ (2.4)

The L,R, D̃ are 2-forms, i.e. belonging to the set Λ2(R3), and u, V are 1-forms, i.e.
belonging to the set Λ1(R3). In R3, we can use the natural coordinate system (xi) or any
other curvilinear coordinate system (vi), where the vi are not necessarily rectangular.

3 Definition of mass

Since the neighborhood of a point of a differential manifoldM resembles with a neighborhood
of the Euclidean space, then a depiction between them can be defined. In the neighborhood
of this point of M is also depicted the relation (2.4), that is

R = dV + D̃

In the case of applying this relation to a circle in R2, the quantity dV expresses the
correlation of the center of the circle with a point on its periphery.

This correlation results from the change of the tangent on two infinitesimally close points
of the circumference of the circle, defining the "acceleration" of each point. The quantity D̃
gives the measure of this correlation for the free observers, because it is the depiction of
the term rc(

k
rc

) which contains the k from which the mass or charge arises. Based on these
observations, free observers in a curved differential manifold, follow a corresponding procedure
as follows:

On each point of a curved differential manifold, a matrix V is attached, whose elements
are expressed by the basis (dxi) of the 1-forms, resulting from the coordinate system (xi),
that is associated to this point. The matrix elements of V , are expressed as (Willmore, 2012)

V i
j = Lijkdx

k (3.1)

The matrix V of a point of a curved differential manifold is called affine connection. The
coefficients Lijk belong to the set Λ0(M), where the set Λ0(M) includes all functions of M ,
are called coefficients of the affine connection. On each point of a curve of a neighborhood,
is attached a matrix V , whose elements are homogeneous of first degree in dxk, which is
resulted from an isomorphic mapping between the tangent spaces of two points belonging to
this curve. The matrix V is the mapping of an "affine connection" of a point of R2, to an
affine connection that is attached to a point of a differential manifold M . The elements dV i

j

of dV in equation (2.4) are 2-forms, because they are expressed, as

dV i
j = dLijk ∧ dxk = (∂pL

i
jk)dx

p ∧ dxk (3.2)

The quantity dV corresponds to the variation of the tangent, that is, the acceleration
that correlates the center of a circle and a point on its circumference and characterizes that
point. We will now examine how D̃, in the right-hand member of equation (2.4), is expressed
in each neighborhood of a differential manifold.

Free observers call this neighborhood of a differential manifold central neighborhood
in correspondence with the circle. At each point of the central neighborhood, the affine
connection V and its variation dV have already been attached. We consider all the possible
curves passing through every point of this neighborhood that connect it to all points of this
neighborhood. Since the points of each neighborhood of the manifold M are characterized

– 4 –



by a matrix V and correlate with each other, then the affine connections of the points of the
central neighborhood are correlated with each other.

In order those correlations to be expressed mathematically, we construct a space with
base elements dxr ∧ dxq, in which are defined 2-forms. This base of 2-forms, results from
the composition of the dual spaces with bases 1-forms, of the tangent spaces of neighboring
points of a central neighborhood. Accordingly, the matrix elements of D̃, express all possible
interactions of any two points of a central neighborhood. So, the matrix elements of D̃ can
be written as a sum of all affine connections V i

s of all points of this neighborhood, as follows:

D̃i
j = V i

s ∧ V s
j = Lisrdx

r ∧ Lsjqdxq (3.3)

where the summation is done with respect to s. Thus, to the matrix elements dV i
j , are

added the matrix elements of D̃. Through equation (3.3), is defined the microscopic concept of
a mass-source, which is expressed by D̃i

j , in a central neighborhood. This procedure is similar
to that followed in the derivation of the equations of Maxwell, where there D̃ is interpreted
as a charge-source (Krikos, 2019).

4 Equations of General Relativity or general equations

Having determine the matrix elements dV i
j , D̃i

j of the terms dV , D̃ of the right member of
equation (2.4), the question that is raised is what express the matrix elements Rij of R, in the
left member of this relation. We write the relation (2.4) through the components of a mixed
tensor as follows

Rij = dV i
j + V i

s ∧ V s
j (4.1)

Substituting the dV i
j and V i

s ∧ V s
j from Equation(3.2) and (3.3), to equation (4.1), we

get

Rij = dLijk ∧ dxk + Lisrdx
r ∧ Lsjqdxq

Due to the interchange rule, i.e.

dxr ∧ dxq = −dxq ∧ dxr

we take

Rij = (∂pL
i
jk − ∂kLijp)dxp ∧ dxk + (LisrL

s
jq − LirsLsqj)dxr ∧ dxq

Changing the dummy indices of the above equation properly, we get the relation

Rij = (∂pL
i
jk − ∂kLijp + LispL

s
jk − LipsLskj)dxp ∧ dxk (4.2)

The expression in parenthesis denotes the components of the curvature tensor of the
affine connection of a point, i.e.

Lijkp = ∂pL
i
jk − ∂kLijp + LispL

s
jk − LipsLskj (4.3)

We can use a symmetric affine connection, for a point of a central neighborhood (central
point), where the coefficients are the Christoffel symbols, i.e. the symbols Γijk, which are
defined as
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Γijk =
1

2
(Lijk + Likj) (4.4)

By this definition we get Γijk = Γikj . The torsion tensor is defined as

T ijk =
1

2
(Lijk − Likj) (4.5)

For a symmetric affine connection the torsion tensor is zero because

T ijk =
1

2
(Γijk − Γikj) and Γijk = Γikj

Adding the members of the relations (4.4) and (4.5), we get

Lijk = Γijk + T ijk

Substituting the Lijk in Eq.(4.3), we take

Lijkl = (RC)ijkl + (RT )ijkl

where

(RC)ijkl = ∂kΓ
i
jl − ∂lΓijk + ΓnjlΓ

i
nk − ΓnjkΓ

i
nl (4.6)

(RT )ijkp = T ijl,k − T ijk,l + T inlT
n
jk − T inkTnjl − 2T ijnT

n
kl (4.7)

with T ijl,k = ∂kT
i
jl. Due to the symmetric affine connection, the torsion tensor is zero, so

we only get

(RT )ijkp = 0

Acting through the operator d on both members of equation (2.4), and using the lemma
of Poincaré (ddV = 0), we take the relation for the matrix elements of the R, D̃, i.e.

dRij = dD̃i
j (4.8)

In order to have the same physical units the two members of equation (4.8), we write

D̃ = kT

where k is a constant with appropriate units. If D̃ is a conserved quantity, then dD̃i
j = 0

so, from equation (4.8) we get

dRij = 0

The above relation leads us to Bianchi identities. We write equation (4.2) as

Rij = Rijkpdx
p ∧ dxk (4.9)

where Rij are the components of the curvature tensor, with respect to the coefficients
Γijk of a symmetric affine connection. Acting by the operator d on equation(4.9), then we get
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dRij = Rijkp,qdx
q ∧ dxp ∧ dxk = 0 (4.10)

where Rijkp,q =
∂Ri

jkp

∂q . Doing a cyclic rotation of the indices k, p, q then, because of even
number of permutations of each differential with the other two, we take the relationship

dRij = (Rijkl,m +Rijlm,k +Rijmk,l)dx
m ∧ dxk ∧ dxl = 0

From these relations, are taken the identities of Bianchi, i.e.

Rijkl,m +Rijlm,k +Rijmk,l = 0 (4.11)

Initially, is contracted the left member of equation (4.11), with respect to the indices i, l
and then from this expression, is lifted the index j so, we get (Pathria, 2003)

−Rjk,m +Rjm,k +Rjlmk,l = 0

In this relation, the indices j, k are contracted so, we get

(Rjm −
R

2
δjm),j = 0

where R is the scalar curvature. From this relation we define the Einstein’s tensor as

Gij = Rij −
1

2
δijR (4.12)

or for covariant components, is taken the relation

Gµν = Rµν − gµν(
R

2
) = 0 (4.13)

So, if D̃ is a conserved quantity, then are derived Einstein’s equations for gravity

Gµν = D̃µν

or

Rµν − gµν(
R

2
) = kTµν (4.14)

From the equation (4.8), we will find the equations of Einstein or general equations. We
write equation (4.8) as

d(Rij − kT ij ) = 0

The quantity in parenthesis should be a constant, i.e.

Rij − kT ij = Λij (4.15)

For the covariant components of the tensors of the equation (4.15) we obtain the equa-
tions

Rµν = kTµν + gµνΛ (4.16)
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The constant Λ is called Λ-cosmological constant. Equations (4.14) or (4.16) are raised
through the reformulation of the definition of mass without using the principle of equivalence.

The equations (4.16), are called general, because they can be applied in any physical
scale, and not only to gravity. In gravity’s scale, the equations (4.14), which are named Ein-
stein’s equations of General Relativity, are applied. The constant k depends on the particular
problem we are facing. We can apply these equations in the case of strong interactions, in
order the equations that govern the motion of quarks inside a nucleon to be found.

Rµν = kTµν + gµνΛ̃ (4.17)

Add and subtract to the right-hand side of this equation the quantity gµν(R2 ) where R is the
scalar curvature, so we get

Rµν = kTµν + gµν(
R

2
) + gµν(Λ̃− R

2
) (4.18)

or

Rµν = kSµν + gµνΛ (4.19)

where the quantity kTµν + gµν(R2 ) becomes

k[Tµν −
R

2
gµν ]T λλ

.
We define the following quantities

Sµν = Tµν − gµνT λλ (4.20)

and

Λ = Λ̃− R

2

The equations (4.19) are called general equations because they apply to all physical
scales and not only to gravity and the constant Λ is called the cosmological constant.

If Λ̃ = R
2 then we obtain the Einstein’s equations with Λ = 0 , that is,

Rµν = kSµν (4.21)

If Λ̃ > R
2 then we obtain the general equations with Λ 6= 0, that is,

Rµν = kSµν + gµνΛ (4.22)

Equation (4.19) was derived from a member of the Planck patch, that is, from a conic
section, so by virtue of self-similarity it would also express the evolution equation of the
Planck patch at each stage of its evolution.
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