Nonlinear dynamics of degradation of Vallisneria spiralis L. chlorophyll photoluminescence at high excitation levels

Olegh Vakulenko, Olesja Grygorieva

Abstract


In the context of the study of the photoinhibition mechanisms of the higher water plant Vallisneria spiralis L. photosynthetic machinery, the fluorescence intensity degradation of chlorophyll a (687 nm) leaf fragments at photoexcitation levels from 7 to 150 mW/cm2 on the wavelength of 488 nm, is investigated. It is shown that the luminescence efficiency decrease rate cannot be described by simple exponential or hyperbolic dependence. To explain this behavior, a kinetic model accounting for dimerization of luminescent molecules under the influence of excess lighting, is put forward. It is supposed that dimers are not capable to produce luminescence in the determined spectral area and, therefore, to transmit energy to their molecules of a photosystem and, eventually, to the reaction center. This results in a plant’s photosynthetic activity decrease.


Keywords


Water plants, Photoinhibition mechanism, Fluorescence intensity, Luminescence efficiency

Full Text:

PDF

References


Lazár, D. Chlorophyll a fluorescence induction. Biochim. Biophys. Acta 1412, 1–28 (1999).

Kautsky, H., Hirsch, A. Neue Versuche zur Kohlensaure-assimilation. Narurwiss. 119, 964–964 (1931).

Kok, B. 1956 On inhibition of photosynthesis by intense light. Biochim Biophys Acta 21: 234-244 (1956).

Ball, R., Wild, A. New trends in photobiology: History of photoinhibition research. J. Photochem. Photobiol. B: BioL 20 79-85, (1993).

Kyle DJ (1987) The biochemical basis of photoinhibition of Photosystem II. In: Kyle DJ, Osmond CB and Arntzen CJ (eds) Photoinhibition, pp 197–226. Elsevier Publishers, Amsterdam

Barber J (1991) Photoinactivation of the isolated Photosystem II reaction centre and its prevention. In: Douglas RH, Moan J and Ronto G (eds) Light Biology and Medicine, pp 21–22. Plenum Press, New York.

Barber J and Andersson B (1992a) Too much of a good thing: light can be good and bad for photosynthesis. Trends Biochem Sci 17: 61–66.

Prasil O, Adir N and Ohad I (1992) Dynamics of Photosystem II: mechanism of pho-toinhibition and recovery processes. In: Barber J (ed) The Photosystems: Structure, Function and Molecular Biology, pp 295–348. Elsevier Publishers, Amsterdam.

Tyystjärvi E (2008). «Photoinhibition of Photosystem II and photodamage of the oxy-gen-evolving manganese cluster». Coordination Chemistry Reviews 252 (3–4): 361–376.

Hakala M, Tuominen I, Keränen M, Tyystjärvi T & Tyystjärvi E (2005). «Evidence for the role of the oxygen-evolving manganese complex in photoinhibition of Photosystem II». Bio-chimica et Biophysica Acta (BBA) - Bioenergetics 1706 (1–2): 68–80.

Ohnishi N, Allakhverdiev SI, Takahashi S, Higashi S, Watanabe M, Nishiyama Y & Murata N (2005). «Two-Step Mechanism of Photodamage to Photosystem II: Step 1 Occurs at the Oxygen-Evolving Complex and Step 2 Occurs at the Photochemical Reaction Center». Biochemis-try 44 (23): 8494–8499.

Krieger-Liszkay A, Fufezan C & Trebst A (2008). «Singlet oxygen production in photo-system II and related protection mechanism». Photosynthesis Research 98 (1–3): 551–564.

Tyystjärvi, E. & Aro, E. M. The rate constant of photoinhibition, measured in lincomy-cin-treated leaves, is directly proportional to light intensity. Proc. Natl. Acad. Sci. USA 93, 2213–2218 (1996).

Mattoo, A. K., Hoffman-Falk, H., Marder, J. B. & Edelman, M. Regulation of protein metabolism: coupling of photosynthetic electron transport to in vivo degradation of the rapidly me-tabolized 32-kilodalton protein of the chloroplast membranes. Proc. Natl. Acad. Sci. USA 81, 1380–1384 (1984).

Nishiyama, Y. et al. Oxidative stress inhibits the repair of photodamage to the photo-synthetic machinery. EMBO J. 20, 5587–5594 (2001).

Allakhverdiev, S. I. & Murata, N. Environmental stress inhibits the synthesis de novo of proteins involved in the photodamage-repair cycle of photosystem II in Synechocystis sp PCC 6803. Biochim. Biophys. Acta 1657, 23–32 (2004).

Wünschman, G. and Brand, J.J. (1992) Rapid turnover of a component required for photosynthesis explains temperature dependence and kinetics of photoinhibition in a cyanobacte-rium, Synechococcus 6301. Planta 186: 426–433.

Vakulenko, O., Grygorieva, O., Dacenko, O. Degradation of chlorophyll luminescence in plants. Ukr. J. Phys. 57, 256-259 (2012).

Vakulenko, O., Grygorieva, O., Dacenko, O., Zujev, V. Degradation dynamics of low-temperature chlorophyll photoluminescence in plants. In: Proccedings of the 11th International Young Scientists Conference Optics and High Technology Material Science SPO-2010, Kyiv, page 173.

Dacenko, O. I., Vakulenko O. V., Gryrorieva O. O. Allometric dynamics of chlorophyll photoluminescence degradation at strong excitation. In: Proccedings of the 17th International Young Scientists Conference Optics and High Technology Material Science SPO-2016, Kyiv, page 59.

Terenin, A. N. Photonics of Dye Molecules and Related Organic Compounds (Nauka, Leningrad, 1967) p. 241 [in Russian].

Perrin, F. La fluorescence des solutions. Induction moléculaire – Polarisation et durée ďémission. Photochimie. Ann. phys. (Paris) 12, 169-275 (1929).

Borisov, B. A, Bykov, O. D. Spectral changes in the fluorescence of chlorophyll during photosynthesis induction. Optics and Spectroscopy 104, 186-189 (2008).

Zavafer, A., Cheah, M. H., Hillier, W., Chow, W. S., Takahashi, S. Photodamage to the oxygen evolving complex of photosystem II by visible light. Scientific Reports 5, 16363 (2015)

Kohlrausch, R. Theorie des elektrischen Rückstandes in der Leidner Flasche. Annalen der Physik und Chemie 91, 56–82, 179–213 (1854).

Hall, D.O., K.K. Rao, K.K. Photosynthesis (6th edn.). Cambridge University Press, 214 p. (1999).

Green, B. R., Pichersky, E., Kloppstech K. Chlorophyll a/b-binding proteins: an extend-ed family. Trends in biochemical sciences 16, 181-186 (1991).




DOI: https://doi.org/10.23954/osj.v3i1.1358

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Open Science Journal (OSJ) is multidisciplinary Open Access journal. We accept scientifically rigorous research, regardless of novelty. OSJ broad scope provides a platform to publish original research in all areas of sciences, including interdisciplinary and replication studies as well as negative results.