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Introduction 
 

Ubiquitous automation is becoming an unavoidable reality, as technology and 
machines continue to integrate seamlessly into everyday environments. To function 
effectively, these systems must possess the ability to anticipate the actions of 
external agents, such as humans, in real time. Action anticipation is a crucial task 
that enables intelligent systems to predict future actions based on observed patterns, 
allowing them to plan and respond optimally. This capability holds significant 
promise for enhancing automation across various domains, from robotics and 
autonomous vehicles to assistive technologies. Researchers have formalised action 
anticipation as a task that involves providing a model with a video segment prior to 
the moment of prediction. Using this input, the model must infer the action class 
labels for a future segment of the video. To achieve this, the model generates a 
multi-modal distribution of predictions, which provides a probabilistic estimation of 
potential actions. The time interval between the observed segment and the predicted 
actions can vary; in this study, it ranges between 0.25 seconds and 2 seconds, 
offering short-term forecasts that are practical for real-world applications. 

This study specifically focuses on egocentric action anticipation, where 
predictions are made using footage captured from a first-person perspective. This 
approach is particularly relevant for wearable devices, such as augmented reality 
(AR) glasses, which are equipped with first-person cameras and can deliver real-
time, assistive feedback to users. In industrial environments, for instance, AR 
glasses could anticipate a worker's next action and provide relevant instructions, 
improving efficiency, safety, and task execution. Such applications highlight the 
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As autonomous systems become more embedded into our environments, 
the ability of these systems to anticipate the future actions of humans will 
become invaluable for providing assistance and safety measures. 
Egocentric action anticipation is a task in which a future activity must be 
predicted using first-person footage. This project is a survey that aims to 
provide an updated view of advancements within this task, to guide 
architecture design for future implementations. This survey has chosen a 
range of publicly available egocentric action anticipation models. 
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immense practical potential of egocentric action anticipation technology in 
augmenting human capabilities and supporting intelligent, responsive automation. 

The paper provides a detailed examination of the current state of egocentric 
action anticipation, using the results of the Epic-Kitchens challenge—a benchmark 
competition for evaluating predictive models. By analysing the strengths and 
weaknesses of the most recent predictive architectures, this study identifies key 
trends and areas for improvement in the field. It highlights the growing dominance 
of self-attention-based models, such as transformers, which excel at processing 
sequential data and learning dependencies across video frames. The insights gained 
from this analysis help to establish a clearer direction for advancing the task, 
identifying the most effective methods for achieving accurate and generalisable 
action predictions. The novelty and significance of this work lie in its 
comprehensive evaluation of state-of-the-art approaches, offering a thorough 
understanding of the current landscape of egocentric action anticipation. By 
identifying gaps and opportunities for improvement, this study serves as a valuable 
foundation for future research and innovation. The findings have far-reaching 
implications, particularly for real-world applications in AR technology, where 
intelligent systems capable of anticipating human actions can fundamentally 
transform industries, improve user experience, and enhance automation in dynamic 
environments. 

 
Figure 1. Egocentric  Anticipation Task  using  Top-3 Actions [1] 

 
 

 Background 
 
This section discusses various approaches to egocentric action anticipation, 

highlighting the use of different neural network architectures for predicting future 
actions. Feature extraction involves RGB video, object detection, and optical flow to 
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capture relevant motion and object information. CNNs process spatial features, but 
lack temporal persistence, while RNNs and LSTMs overcome this by modelling 
sequential dependencies, with LSTMs improving on the vanishing gradient problem. 
GRUs offer simpler alternatives with reduced training times, though they share 
limitations with LSTMs. Finally, transformers enhance action anticipation by 
processing sequences in parallel using a self-attention mechanism, outperforming 
other models in this domain. This section will also cover the critical information 
from the literature review and recent mention of novel techniques and results.  

 

Features and extraction 
 
Generally, datasets for egocentric action anticipation consist of RGB video. This 

data is then directly fed into an end-to-end model or is pre-processed to extract 
further modalities that focus on a video, such as a hand mask or object detection. 
Aside from RGB, the most typically used modality for this select task is object 
detection [2]. Objects actively used within a scene are identified; this assists the 
model by identifying objects that can assist identification of target variables for the 
prediction task (noun and action object pairing labels). The Object modality is 
extracted using a Faster R-CNN, which results in vectors summarising object 
classes within the current frame. Optical flow represents the changes of patterns 
between frames, which within egocentric action anticipation can be the result of 
head movement, object movement or hand/arm movement. This is useful in 
analysing motion. Optical flow is extracted from RGB using a temporal segment 
network (TSN) and pre-trained for an action recognition task. 

 
 

Convolutional neural networks 
 
A convolutional neural network (CNN) works by gathering and processing 

information within a grid structure. CNN works by creating a filter that slides along 
every possible frame position. CNNs do have inherent issues within the architecture, 
namely persistence. This network has no mechanism to inform future predictions 
based on previous outputs. This means that CNNs can only work over static frames 
but can be used for video processing when combined with a network that can 
process temporal information. 

Furnari et al. [3] uses two feed-forward 3D CNNs combined with a graph to 
transfer knowledge between the action recognition network and the action 
anticipation network. However, this method under-performed the baseline model of 
rolling-unrolling LSTM (RULSTM) and was over two times faster than the 
recurrent-based network in training and inference time. A multi-modal temporal 
CNN [4] prioritises inference time within its design. This model achieved greater 
accuracy than the RULSTM baseline, with inference time still twice as fast. 

 

Recurrent neural networks 
 
Recurrent Neural Networks (RNNs) allow for information persistence - which is 

not viable within CNNs. This property is gained using a looping mechanism that 
provides information (a representation of previous inputs known as the hidden state) 
to flow between each computational step. The hidden state is fed forward through 
the network allowing for sequential memory and pattern identification over a 
sequence of information. In terms of action anticipation, RNNs can detect patterns 
over time. When the network updates weights during gradient descent, issues lie in 
how the weight that connects the hidden layer is updated. These weights experience 
an exploding or vanishing gradient. 
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Long-short term memory 
 
Long-Short Term Memory networks (LSTMs) [5] are a recurrent-based 

architecture designed to improve RNNs by allowing for long-term dependencies 
while eliminating the risk of vanishing gradients. LSTMs gated architecture has 
demonstrated superiority against the standard tanh module RNN within parameter-
rich data sets [6]. Panasonic’s “CNSIC PSNRD” [7] is the current best-performing 
LSTM-based method, coming second place within the Epic-Kitchens 2021 
challenge. The implementation is based on the Rolling-Unrolling LSTM but with 
further architectural optimisations including label smoothing, an uncertainty-based 
loss function and test-time augmentation. Limitations of LSTMs, which are 
highlighted during the action anticipation task, is that every frame of data is not rich 
with features that will correlate with the upcoming activity, which introduces noise 
that standard LSTMs cannot eliminate. 

 

Gated recurrent unit 
 
Gated Recurrent Unit (GRU) is the most recent type of recurrent architecture 

proceeding the LSTM. While similar, the main difference is the simplicity of each 
cell structure. This structure is particularly advantageous in reducing training times 
by increasing efficiency due to fewer network operations. Additionally, the network 
can train on less training data, but the fewer parameters also mean a shorter memory 
than the LSTM. Huang et al. [8] utilise a GRU within a graph structure to compare 
context relationships between events and the related features. This model 
outperformed many implementations, including the RULSTM and ImagineRNN 
(included in this survey). Limitations of GRUs are similar to LSTMs, in that every 
frame of data is not correlated with the upcoming activity, so it introduces noise that 
cannot be eliminated. 

 

Transformer 
 
Transformers improve on weaknesses of recurrent based modules like the LSTM 

and GRU [9]. This weakness is based on the recurrent nature of the models - they 
cannot be run in parallel due to needing to process information sequentially. While 
this option is available in CNN- based implementations, the supplementing 
networks become too large to be helpful within this application. The transformer is 
considered to have three main characteristics. Firstly, it processes information as a 
whole and in parallel and not sequentially like a recurrent network. The self-
attention mechanism of a transformer allows for every part of the input sequence to 
be modelled for dependencies against every other part of the sequence, which allows 
the net- work to learn what is important within the data. Finally, as there is no 
recursion mechanism, sequences are encoded with their positions related to their 
place in the input sequence. This architecture not only improves on training times of 
RNN but has been shown to outperform all current existing architectures in action 
anticipation. 

 
 

The Data 
 
The Epic-Kitchens [10] dataset used within this project contains 55 hours of 

first-person recordings from a head-mounted Go-Pro that captures a variety of tasks 
within 32 separate kitchens. The dataset contains 39596 action annotations, 125 
verbs, 331 nouns and 2513 actions. The test set for this data contains two distinct 
collections of seen and unseen kitchens to ensure models are not over-fitted to the 
training sets and allow for a measure of model generalisability. The seen kitchens 
set contains 32 kitchens within the training and testing sets, with a split of 80% 
training and 20% testing. The unseen data is split into whole sequences, meaning 
each kitchen is either in the training or test set, never within both. 28 kitchens are 
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allocated to the training set, leaving 4 kitchens seen in the test set, giving a 93% 
training and 7% test split. EGTEA Gaze+ [11] contains a semi-scripted dataset 
containing 28 hours worth of cooking activities filmed in the first-person 
perspective from 32 individuals in different kitchens. It includes 19 verbs, 51 nouns 
and 106 individual actions. The data is split into three sets of training and validation 
sets. 

 
 

The Models 
 
This section introduces the models that this survey aims to analyse. Backgrounds 

into each model implementation will provide a framework for understanding the 
results and comparing each method in the analysis section. 

 

Rolling-Unrolling LSTM 
 
The Rolling-Unrolling LSTM (RULSTM) [1] is an RNN based architecture. 

RULSTM model works on three modalities, RGB, optical flow and object detection. 
These modalities are pre-extracted, as mentioned within section 3. The overall 
architecture is based on the completion of two distinct sub-tasks. The encoding 
module (Rolling-LSTM) works on past observations, attempting to summarise past 
events until a targeted time step. 

The Unrolling-LSTM attempts to use cell vectors and hidden states from the 
Rolling-LSTM to anticipate target action. Initially, the two modules undergo pre-
training using a novel architecture: Sequence Completion Pretraining (SCP). SCP 
modifies each module’s internal connections to specialise in the desired sub-task. 
During the process of SCP, the Unrolling-LSTM internal states are computed by 
using sample input representations from future time-steps [1]. 

After encoding is completed, the hidden and cell vectors are passed into the U-
LSTM. The ULSTM then iterates on the video clip (fm,t) (nt) times until the start of 
the target action is reached. Hidden and cell states for the U-LSTM are computed at 
each iteration. This structure is repeated within every branch of the model. Action 
scores are then computed using the last hidden vector of each branch’s U-LSTM 
using linear transformation based on learnable parameters [1]. To ensure 
information from functional modalities is preserved, the modality attention module 
(MATT) computes an attention score for each modality that indicates the relative 
importance within the final prediction [1]. 

 

ImagineRNN 
 
ImagineRNN [12], uses the aforementioned RULSTM as a base architecture and 

performs the task using a recurrent neural network architecture. To optimise the 
model, ImagineRNN is asked to pick the correct future states from a series of 
“distractors”. This contrastive learning task ensures that a trained ImagineRNN can 
detect the change of action states at different times. The model has additional 
supervision by using future intentions. This attempts to extract the purpose for the 
actions in the current frame, which helps to predict the following future action. The 
issue in this approach is that adjacent frames are likely to share similar visual 
features, so model capacity is wasted in predicting the future intention for this case. 
Instead, the network is trained to forecast future changes instead of the future frame 
features. 

 

Latent goal 
 
Latent Goal bases its architecture on the supposition that, for any goal, a series 

of actions are completed to reach an implicit goal. The action anticipation task 
would greatly assist in extracting the inherent goal that the agent is attempting to 
accomplish. Latent Goal Learning [13] aims to compute the goal from within a clip 
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to anticipate the following action. The implementation involves using a series of 
stacked LSTMs (based on the average number of actions per video clip). Each 
LSTM unit represents intermediate actions leading to the latent goal. These LSTMs 
provide the latent goal, of which the proceeding visual representation should be 
closer to the latent goal than the embedded visual representations. To encourage 
separation, a threshold is given between the latent goal and the observed video 
representations. 

A single LSTM is used to iterate through all candidate actions, determining their 
potential as the following action. The most likely candidate is what the current video 
representation calculated to be closest to the latent goal. Three criteria assist this 
process. First, the following visual feature is calculated using the sequence goal’s 
action validation and observed representation. Then, the visual feature is compared 
with the latent goal, yielding the candidate closeness, which measures if the visual 
feature is closer to the goal. Finally, the initial latent goal is compared with the 
newly generated latent goal. This measurement yields the distance between the 
latent goal and the anticipated action. The action candidate is selected from these 
criteria, and the process is repeated from the next action in the sequence. 

 

Self-regulated learning 
 
Self-Regulated Learning [14] focuses on extracting context from the video clips. 

This is done by looking for contextual relations along with temporal range: looking 
at extracting these relations over both the features and semantic information from 
within the data. LR works by using a three-stage architecture. Firstly, features are 
extracted using a TSN and then aggregated to encode the observed video 
representations, which yield a hidden representation that is passed into the recursive 
sequence. The second step uses a series of GRUs that predict the following time 
step, feeding the previously generated hidden state and video representation until the 
desired time step is reached. Finally, a linear layer with a soft-max activation 
function is used to create a probability distribution for the target activity at the final 
time-step. 

Future prediction works by extracting features from an observed clip into feature 
representations, which are then recursively run to produce the next prediction. This 
process continues until the target time is reached. The semantic context describes 
the relationship between activities and objects in a target activity. To aid in 
extracting the semantic context, two additional tasks of action classification and 
object categorisation are run under a multi-task learning framework, improving 
performance on the main task. This helps the network anticipate future actions, as 
the verb and noun are target labels for the task. 

 
 

Temporal aggregation 
 
Temporal Aggregation [15], uses an attention-based architecture for predictive 

modelling. This improves on the limitations of RNNs bottleneck of only working 
well on small sequences (due to the tendency to pay more attention to the final parts 
of a sequence from being fed sequentially). Attention introduces a form of memory 
within the network - the attention architecture in Temporal Aggregation allows for 
storage of attention weights throughout all inputs into the network giving context to 
all frames [16]. This implementation uses optimisation techniques such as max-
pooling and a novel representation of processing inputs. Additionally, temporal 
Aggregation works by using an ensemble of techniques that use the long-range past. 
This model’s representation focuses on extracting long-range observations and 
recent representations at various levels. 

To reduce the computational load of pooling low and high-level features, 
concatenating max-pooled features between two frames creates a snippet. This 
method is later shown to be effective at the task while remaining lightweight over 
large video clips. Recent and spanning features are extracted using start and end 
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frames and a number of intermediate snippets. Recent features are defined as a 
feature bank of snippet features with different start frames. Spanning features is a 
feature bank of snippet features with a varying number of snippets. These feature 
snippets are combined as an ensemble by varying the number of snippets from the 
spanning past and keeping the number of features from the recent past constant. To 
capture relationships among and between spanning and recent snippets, spanning 
blocks (derived from non-local blocks) are created. Spanning blocks compute fixed-
length representations for snippets. Outputs from multiple coupling blocks are 
concatenated to produce aggregated temporal representations of recent and long-
range past. To anticipate future action, multi-step estimates are computed. All 
temporal aggregates and classification layer outputs are run through a linear layer. 
The output of which is fed into a single-layer LSTM. The LSTM predicts action and 
duration vectors for each time step. Dense anticipation loss sums the cross-entropy 
over the current action, current action duration, future actions and future action 
duration. This process is applied recursively until the target time step is reached. 

 
AVT 

 
The adaptive video transformer (AVT) [17] is an end-to-end model based on a 

two-stage architecture. A notable feature is the casual attention modelling, which 
only predicts feature actions based on the observed frames. The AVT is the first 
end-to-end transformer architecture for video and uses self-attention for high-level 
reasoning and image recognition. Like Temporal Aggregation, attention is 
leveraged; however, self-attention can model dependencies between varying parts of 
the input sequence leading to further extraction of relationships. This provides a 
significant degree of generalisability as every input feature attends to every other 
input feature allowing for the extraction of relationships between all features in a 
sequence [16]. The backbone network of the AVT (AVT-b) is based on a vision 
transformer (ViT). This network is attention-based, extracting a feature 
representation for each frame. Future features are predicted using the head of the 
network (AVTh); this works by applying a Casual Transformer Decoder, the output 
of which is decoded into a distribution of predictions. This distribution is then 
mapped over the semantic action classes of which the final prediction is extracted. 
Training of AVT is supervised with three separate losses. A cross-entropy loss is 
used to supervise the next action prediction with future labels. The focus is on 
intermediate predictions at the feature level; future features are predicted to match 
actual features that appear within the clip using self-supervision. To assist prediction 
within the action class, action labels from the dataset are used to supervise 
intermediate predictions (when a clip overlaps with labelled action segments 
preceding the target segment). 

 

Evaluation metrics 
 
Top-1 Accuracy: The most intuitive of the evaluation metrics is Top-1 accuracy. 

Accuracy is defined by comparing the model’s highest-ranked prediction of a verb, 
noun and action to the ground truth labels. 

Top-5 Accuracy: Top 5 Accuracy takes the top 5 highest scored anticipatory 
predictions from the model and the predictions’ accuracy against the ground truth. 
Accuracy of Top-5 over Top-1 accuracy has been demonstrated experimentally to 
effectively recover true rankings in multi-label learning algorithms. 

 

Visibility of the tests 
 
The testing will be based on the structure of seen and unseen test sets to measure 

each model’s generalisability towards novel environments. The seen test set will 
include all the identical kitchens between training and testing (28 in total). The 
sequences within the footage are split 80% into training and 20% into testing. So 
while the identical kitchens are within seen, no same sequence is used. Unseen is 
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divided so all clips for individual kitchens are split into training or testing, with four 
new kitchens and participants presented. 7% of the frames within the total dataset 
are unseen. This testing implementation was created within the first Epic-Kitchens 
dataset [18]. 

 
Table 1 Comparing Seen and Unseen test splits [18] 

 
Subjects     Sequences    Duration(s)     Action Segments 
Train/Val     28 272 141731           28,561 

S1 Test        28 106 39084           8,064 
S2 Test        4 54 13231           2,939 

 

Varying anticipation times 
 
Within the formal training and testing, all models are trained to anticipate with a 

time step of 1 second ahead of the shown clip. To assess how adaptive the models 
can be with their predictions, anticipation times will be iterated from 0.25 seconds to 
2.0 seconds (using 0.25- second increments). 

 
 

Results 
 
The results are presented in the following tables: 
 
Table 2 Top-1 Accuracy on Epic-Kitchens-55 

 
Top-1 Accuracy %                       Seen Kitchens Unseen Kitchens 

Model Verb   Noun   Action                    Verb   Noun   Action 

RULSTM 33.04  22.78   14.39 27.01 15.19   8.16 

ImagineRNN 35.44  22.79   14.66 29.33 15.50   9.25 

Self-Regulated 34.86  22.83   14.22 27.42 15.47   8.81 

TemporalAgg 37.87  24.10   16.64 29.50 16.52   10.04 

AVT+ 34.37  20.16   16.84 30.65 15.64   10.40 

LatentGoal 27.96  27.40   8.10 22.41  9.23    4.78 

 
Table 3 Top-5 Accuracy on Epic-Kitchens-55  

 
Top-5 Accuracy % Seen Kitchens Unseen Kitchens 

Model Verb   Noun   Action                    Verb    Noun   Action 

RULSTM 79.55  50.95   33.73 69.55  34.38   21.10 

ImagineRNN 79.72  52.09   34.98 70.67  35.78   22.19 
Self-Regulated 79.57  52.05   34.59 71.90  36.81   22.03 
TemporalAgg 79.74  53.98   36.06 70.13  37.83   23.42 
AVT+ 80.02  51.57   36.52 72.17  40.76   24.26 
LatentGoal 78.09  55.98   26.46 71.90  36.81   22.03 
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Table 4 Varying Anticipation Time (Seconds) on Epic-Kitchens-55 Accuracy 

Model 0.25     0.5     0.75     1     1.25     1.5     1.75     2 

RULSTM 39.1   37.3    36.4   35.3 33.4    32.2    30.7   29.5  

ImagineRNN 39.1   38.5    36.7   35.6  33.6    32.5    28.8   27.5  
Self-Regulated 40.5   38.6    36.7   35.5  34.1    32.3    31.3   30.2  
TemporalAgg 41.3   39.5    37.2   36.4  35.1    33.7    31.8   30.9  
AVT+ 42.3   40.2    37.6   36.8  35.7    34.4    31.9   31.2  
LatentGoal 34.3   31.8    27.8   26.9  24.8    24.3    23.0   21.7  

 

Critical analysis 
 
This section will cover general findings from the experimentation. Additionally, each model 
will be analysed further, relating results to architecture 
 

Table 5 Varying Anticipation Time (Seconds) on EGTEA-Gaze+ (Top-5 Accuracy) 

Model 0.25     0.5     0.75     1     1.25     1.5     1.75     2 

RULSTM 74.3    71.8    68.4   66.4   63.5    61.4    59.1    56.8  

ImagineRNN 74.6    72.3    68.5   66.7   63.4    62.1    59.4    57.2  
Self-Regulated 82.6    78.1    73.5   70.7  66.4    64.9    61.8    59.6  

 
Fig.5 shows an aggregation of all model accuracy for each prediction class, split 

between seen and unseen and Top-1 and Top-5, respectively. Within Fig.5, it is 
clear that implementation and performance for all classes (Action, Verb and Noun) 
are higher on the seen test set than on the unseen test set. Additionally, validation 
and test results yield higher accuracy when using Top-5 as a metric instead of Top-
1. Now to address trends within each prediction class (Verb, Noun and Action). As 
previously described, action labels for this task use compound statements such as 
‘get fish’ and ‘cut paper:baking’. With 2,512 unique action representations, the 
lowest class performance is expected to be the action class. As can be seen, this is 
consistent across all implementations, dataset training visibility and metrics. Nouns 
(objects within the scene such as ‘kettle’ and ‘pan’) and Verbs (actions such as 
‘open’ and ‘shake’) have consistent rankings of Verb predictions yielding the 
highest accuracy, with Noun accuracy being the second most accurate class 
prediction. Just like for action, the rankings for verb and noun are consistent 
between all implementations, dataset visibility and metrics. 

 

 
Figure 2 All models scores aggregated into Seen and Unseen 
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From the results we can infer that, generally, within Epic-Kitchens 55, 

anticipating the next active object in the scene (anticipating the next object in use) is 
more complex than anticipating and labelling the following verb. The lack of 
performance in this class may be due to the poor quality of the object detection or 
the need for a specialist sub-network to improve the next active object prediction. 
To summarise the Top1 and Top-5 accuracy in the test set results, the model that 
achieved the highest performance was the adaptive video transformer (AVT). Latent 
Goal Aggregation performed second best out of both models in the test set, followed 
by Temporal Aggregation, which only outperformed all models within Top-1 
accuracy Verb prediction within the Seen test-set. 

 

 
Figure 3 All models tested upon Epic-Kitchens Validation-set, measured with Top-5 Action Accuracy. 
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Figure. 4 Iterating anticipation times for EGTEA Gaze+ 
 
 
Fig.3 displays all the models tested on the Epic-Kitchens 55 validation set, with 

anticipation time iterated (each model is trained to anticipate at 1 second ahead). As 
expected, the general trend for all models is that action anticipation accuracy drops 
the greater the time to anticipate. AVT+ performed with the highest accuracy in this 
task and demonstrated the generalisability of the network. Following with second 
best results: Temporal Aggregation. This network clearly shows a dominance that is 
hard to discern from comparing results within the Epic- Kitchens 55 test sets. Self-
Regulated Learning, ImagineRNN, and RULSTM have tightly grouped results due 
to their common recursive sequence prediction architecture. Latent Goal performed 
the worst. Fig.4 confirms that of the recursive architectures, Self-regulated was the 
most generalisable when iterating anticipation times compared to RULSTM and 
ImagineRNN. 

 

RULSTM 
 
The Rolling-Unrolling LSTM (RULSTM) [1] is considered the baseline for this 

task. The RULSTM has specific tools to improve performance - mainly the 
‘Sequence Completion Pre- Training’ (SCP) and ‘Modality Attention mechanism’ 
(MATT). SCP is used to differentiate task specialisation during training. MATT 
addresses that in specific prediction scenarios, one modality may be more valuable 
than the other. It does this by calculating attention scores that rate the importance of 
each modality for each prediction. The attention mechanism does assist the model in 
filtering uncorrelated features. However, the recurrent nature of LSTMs is limited 
by the difficulty of training due to long gradient paths [2]. 

 

ImagineRNN 
 
ImagineRNN is built using the architectural framework of the RULSTM. 

Throughout all results, marginal improvements of no more than 1-2% are made over 
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the RULSTM. While several optimisations are made on top of the RULSTM, the 
main architectural changes include changing a regression loss function to training 
the ImagineRNN to pick out the correct future state from distractors, allowing for 
the learning of how future features change. Additionally, a focus on predicting the 
difference between adjacent frames is used to lead the model’s focus towards 
features changing between time steps [12]. The improvements by architecture’s 
optimisations are validated within ‘Learning to Anticipate Egocentric Actions by 
Imagination’ (Yu et al. [12]). Fig.4 shows RULSTM and ImagineRNN with tightly 
grouped results indicating that the optimisations of the RULSTM within 
ImageinRNN does not provide much generalisability. A further limitation of this 
implementation is that the handling of future uncertainty is absent. A future 
implementation with the inclusion of the Verb-Noun Marginal Cross Entropy Loss 
(VNMCE) [19] may address these issues and improve overall model performance. 

 

 
Figure. 5 All results from the Epic-Kitchens Test Set 
 
 

Self-regulated learning 
 
Self-Regulated Learning did not achieve any best-in-class scores. It 

outperformed the baseline RULSTM within all classes apart from Top-1 Seen 
Action, which scored 0.17% behind RULSTM. Compared to the other 
implementations, its highest ranking was second place within Top-5 Seen Noun 
(behind Latent-Goal). The performance of Self-Regulated Learning is very similar 
to ImagineRNN, except having generally lower scores when measured with Top-1 
accuracy. While Self-Regulated is architecturally different from the ImagineRNN 
and, by extension, RULSTM, there are similarities of a recurrent prediction 
structure (in this instance a layered GRUs) along with optimisations of producing an 
attention score for each modality and fusing the modalities based on the anticipation 
results (RULSTM inspired both the attention and the fusion implementations). Self-
Regulated Learning can outperform RULSTM and ImagineRNN when varying 
anticipation times in both datasets, which suggests that the layered GRU recursive 
structure allows for a more generalisable predictive model than the LSTM 
implementations. This may result from the multi-task learning framework, which 
enhances the final video representation by targeting verb, noun, and the final action 
class. 

 

Latent goal 
 
Out of the models, Latent-Goal is universally the best at noun-related prediction. 

This may be due to the large number of objects (325) within the dataset compared to 
a comparatively small 125 verbs. Since Latent Goal aims to model the underlying 
goal within the sequence to model the following action, a more significant instance 
of objects (nouns) means that the set of representative goals found while processing 
the dataset may be mapped more directly onto associative objects than nouns. 
Further experimentation into the noun performance using a dataset with more 
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actions than nouns will help determine whether latent goals map better to objects for 
a fundamental reason or whether more instances allow for clear classification 
boundaries. The efficiency of this implementation is surprising as the ideal dataset 
for this model should have as few goals as possible, but due to the natural filming of 
Epic-Kitchens, the wearer of the first-person view is likely to be pursuing multiple 
goals simultaneously, for example preparing vegetables while boiling pasta and 
cleaning up. This parallel goal complexity may explain why the predictions for the 
action are so comparatively low against all models, falling behind the baseline of 
RULSTM across all action results. If counting based on best-in-class accuracy, 
Latent-Goal is considered second place; this is solely based on high noun accuracy 
and should not be credited as a suitable option for general egocentric action 
anticipation due to poor overall action anticipation. An exciting application of this 
implementation may be to incorporate a lightweight version of this architecture as a 
module on the AVT to solely predict nouns (which, based on this survey, is a 
weakness in the AVT). 

 

Temporal aggregation 
 
Temporal Aggregation [15] is great at Verb predictions on seen datasets, scoring 

highest with the Verb class metric within the seen tests set when measured in Top 
1% accuracy (Table 4). Measuring within Top-5 accuracy, temporal aggregation’s 
verb class accuracy was second most accurate of all models, 0.26% behind AVT’s 
accuracy. Additionally, it came second within Seen Top-5 Actions and Unseen 
Actions. The main application for Temporal Aggregation is within third-person 
action anticipation, specifical anticipation within Breakfast and 50Salads. Break- 
fast and Salads have a mean clip duration of 26.6 and 29.7 seconds much larger than 
Epic-Kitchens 55’s 3.7 seconds. Furthermore, the number of classes within 
Breakfast and 50Salads are 48 and 17, respectively, with Epic-Kitchens containing a 
comparatively large 2513 classes. To effectively infer distant temporal relationships 
along with such an extensive range of classes shows how adaptive and generalisable 
this architecture is over a wide range of datasets. As mentioned in Section 4, data 
representation within the model is fundamentally different. Mixing multiple scales 
of features from recent and spanning snippets allows the model to anticipate long-
range temporal relationships successfully. Within this survey, it performed 
competitively against the other implementations. This is likely due to the inclusion 
of verb and noun focus into the models as additional tasks, improving verb accuracy 
within each testing metric with the most improvement within verb accuracy by 6.5% 
within Seen Top-1. While attention-based aggregation improves the long-range of 
temporal dependencies seen within RNN architecture, the model is still limited by 
creating aggregate representations causing some loss of sequential ordering of 
sequences. 

 

AVT 
 
AVT [17] produced the best overall anticipation scores, coming best in class in 

4/6 categories when measured in Top-5 accuracy and 3/6 categories in Top-1 
accuracy (specifically within both Top-5 Seen and Unseen Verb and Action 
classes). Top1 is best in class within Seen Action and Unseen Verb and Noun. This 
performance matches the results from the Epic-Kitchens 2021 challenge, where 
AVT is implemented on Epic-Kitchens 100, a version of Epic-Kitchens 55, but with 
more footage of different kitchens appended. The AVT also produced the highest 
results on the Epic-Kitchens 55 validation set for all anticipation times, 
demonstrating the networks generalisability. This performance over recurrent-based 
architectures (RULSTM, ImagineRNN, Latent-Goal, Self-Regulated) and the 
attention-based Temporal Aggregation is unsurprising. The self- attention 
mechanism for the AVT+ allows for the representation of a sequence to be 
computed based on relating all features in a sequence to each other, while the multi-
headed attention functions to extract information from varying representational 



Open Science Journal 
Research Article 

Open Science Journal – January 2025  14 

subspace. An example of the efficiency of the attention of the transformer can be 
seen within an abolition study on the AVT+ [17] which revealed that the model 
attended explicitly to the hands and objects within the scene 20. Previous works 
required hand masks as an added modality for the model to focus upon. This focus 
on hand, objects and their interactions may be critical to the best-in-class verb and 
action accuracy. 

 
 

Conclusion and future work 
 
Overall, this work set out to provide a comprehensive survey of egocentric 

action anticipation models, a niche yet growing area of research. The survey 
evaluated six different architectures, including three recurrent methods—RULSTM, 
Self-Regulated, and ImagineRNN. These recurrent models incorporate attention 
modules to score feature importance and enhance predictions, addressing the 
challenge that much of the data within a frame is often uncorrelated with the 
upcoming task. The inclusion of attention mechanisms significantly improves 
accuracy and generalisability, allowing the models to focus on the most relevant 
temporal and spatial features. Among the evaluated methods, Temporal Aggregation 
performed notably well, ranking second overall, due to its ability to effectively 
aggregate past features using attention-based techniques. However, the current state-
of-the-art model, the Anticipative Vision Transformer (AVT), outperformed all 
other architectures. Built on the transformer architecture, AVT employs a self-
attention mechanism, enabling it to process entire sequences in parallel and learn 
relationships between all features within a sequence. This holistic approach allows 
AVT to achieve superior accuracy compared to recurrent and other temporal 
models. In summary, the goals of this study were successfully achieved. This survey 
provides a comprehensive overview of the current landscape of egocentric action 
anticipation, highlighting the strengths of self-attention-based models like 
transformers. By offering insights into model performance and architectural trends, 
this work serves as a foundation for future research, guiding new implementations 
towards self-attention mechanisms to further advance the action anticipation task. 
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