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Parkinson’s Disease was first introduced by James Parkinson in 

1817. Since then, major strides have been made in the 

development of its treatment. Early treatments were dominated 

by traditional and complementary therapies, which were largely 

serendipitous and observation-based. Current drug-based 

therapies manifest in the form of levodopa accompanied by 

dopamine agonist, COMT inhibitor, or MAO-B inhibitor, for the 

purpose of reducing the levodopa-induced symptom fluctuation. 

In terms of surgical treatment, while ablative surgeries in the 

brain have been abandoned due to high mortality rate in the 

late 1900s, Deep Brain Stimulation in the subthalamic nucleus or 

internal globus pallidus has mostly replaced ablative surgeries 

since its introduction in 1987. Current research topics include 

non-dopaminergic agents for motor fluctuation reduction, 

transplantation of dopaminergic neurons, gene therapies using 

viral vectors, reduction of alpha-synuclein neurotoxicity, and 

neuroprotective therapies. Especially, due to the fact that the 

etiology of the disease is yet to be elucidated, neuroprotective 

therapies aimed at slowing or stopping disease progression are of 

particular interest. It is suggested that future research should 

aim towards clarifying the cause of the disease, for the 

development of a treatment that can permanently halt or reverse 

Parkinson’s Disease-related neurodegeneration. 
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Introduction 
 

Parkinson’s Disease (PD) is a neurodegenerative disease characterized by 

distinct triad cardinal motor symptoms of bradykinesia, rigidity, and resting 

tremor. It is caused by dopamine deficiency following the loss of dopaminergic 

neurons primarily in the substantia nigra pars compacta (SNc), but the reason 

for the neuronal death is unknown to date. However, it is strongly suggested 

that, in cases of idiopathic PD, the combination of genetic factors and 

environmental factors leads to various mechanisms that trigger neuronal death 

[1]. It is often accompanied by the pathological hallmark of Lewy Bodies - 

aggregated alpha-synuclein proteins - in the nigrostriatal pathway.  

Since its first medical introduction by James Parkinson in 1817 [2], there have 

been major strides in the development of treatments for PD, from 

anticholinergics and ablative surgeries to levodopa to Deep Brain Stimulation. 

Current research revolves around developing therapies that can stop or reverse 

the progression of the disease. A number of agents are being tested for their 

neuroprotective abilities, but none of them have been proven adequate for clinical 

use to date [3]. Although all current therapies are symptomatic in nature and no 

single cure for the disease exists, the development of new molecular targets, 

biomarkers, and toxin animal models are providing a deeper understanding of the 

causes and mechanisms of PD. This article is a narrative of the major advances 

in the treatment for Parkinson’s Disease since its first description, as well as its 

future prospects.   

 

 

Early treatments 
 

Early treatments of PD were largely serendipitous and observation-based in 

nature, with traditional and complementary therapies prevailing.  

Although Parkinson acknowledged in his “An Essay on the Shaking Palsy” 

that a “countervailing remedy” is yet to be discovered, he hoped to find an 

intervention that would stop the progression of the disease [2]. Assuming that the 

disease originates from the medulla, he recommended venesection in the upper 

part of the neck, followed by the insertion of vesicatories to induce inflammation 

on the skin; this was intended to divert blood away from the medulla and 

depressurize it [2].  

Early pharmacological treatments were dominated by anticholinergics, which 

reduce the acetylcholine levels in the central nervous system to restore the 

acetylcholine-dopamine balance in PD patients. The first widely-recognized 

groups of drugs were belladonna alkaloids, first introduced by Charcot’s student 

Ordenstein [4]. Out of multiple belladonna-based anticholinergic agents, Charcot 

especially advocated the use of hyoscyamine, along with rye-based ergot products 

from which today’s dopamine agonists are derived [5]. However, despite the 

widespread use of belladonna alkaloids, it was recognized by contemporary 

medical practitioners that they had moderate yet limited palliative effect on 

Parkinsonism [6]. 

Ablative surgeries in the brain were introduced in the early 1900s, with the 

development of a stereotaxic equipment by Horsley and Clarke [7]. In the 1940s, 

the basal ganglia was first targeted by Meyers for the reduction of Parkinsonian 

tremor, and noticed an improvement in rigidity as well as tremor; however, it 

was abandoned due to high mortality rates [8]. After Cooper’s serendipitous 
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discovery of the effect of thalamotomy on tremor in the 1950s [9], the procedure 

was used intermittently, but was also soon replaced by medication with the 

emergence of levodopa in 1960. 

 

 

Current treatments 
 

Drug-based therapies 
 

Levodopa 

 

Following the discovery of dopamine deficiency in the striatum and the SNc of 

PD patients in 1960 by Ehringer and Hornykiewicz, levodopa, also known as l-

dopa, was proven effective as an anti-parkinsonian agent in 1961 [10]. Since then, 

levodopa still remains as the most effective therapy for controlling the motor 

symptoms of PD [11].  

As a precursor of dopamine, levodopa can cross the BBB, which in turn gets 

converted into dopamine in the brain, binds to D1 and D2 receptors, and restores 

dopamine deficit. However, most of the drug undergoes peripheral metabolism by 

amino acid-decarboxylase (AADC) and catechol-o-methyltransferase (COMT) 

before reaching the CNS, increasing the concentration of plasma dopamine and 

causing complications including nausea, vomiting, and orthostatic hypotension 

[8]. It is thus often taken together with AADC inhibitors such as carbidopa and 

benserazide, with the first combination of carbidopa-levodopa becoming 

commercially available in 1975 [12]. 

In addition to the side-effects, long-term use of levodopa inevitably leads to 

levodopa-induced fluctuation between the ‘on’ and ‘off’ periods: during ‘on’ 

periods, PD patients show a good response to the drug; during ‘off’ periods, 

motor complications, most often dyskinesia, predominate [13]. For this reason, 

levodopa treatment has often been delayed until significant impairment of 

function; however, increasing evidence suggests that delaying levodopa treatment 

has little impact in long-term motor symptoms, but only prevents patients from 

receiving therapeutic relief in the initial stages [14].  

As an alternative to oral administration of levodopa - which results in a 

discontinuous supply of levodopa to the brain and thus causes motor 

complications [15] - continuous levodopa-carbidopa intestinal gel infusion (LCIG) 

has been developed. In LCIG, levodopa-carbidopa can be infused through a 

percutaneous gastrojejunostomy tube by a battery-powered pump. Typical 

indications of LCIG are advanced PD complicated by “Off” periods that cannot 

be satisfactorily controlled with “optimized” medical therapy, where “optimized” is 

defined as a combination of levodopa-carbidopa, a dopamine agonist, and at least 

one other anti-parkinsonian agents (COMT inhibitor, MAO-B inhibitor) [16]. It 

is reported that LCIG results in a significant reduction of daily mean ‘off’ time 

and an increase of mean ‘on’ time without dyskinesia in advanced PD patients 

[16]; however, it is commonly accompanied by complications such as abdominal 

pain, skin infection, peritonitis, gastric reflux, and aspiration [17]. 
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Dopamine agonists 

 

Dopamine agonists (DA) are agents that bind to dopamine receptors to mimic 

the effects of dopamine. They have advantages over levodopa, in that they do not 

generate toxic metabolites, are independent of neuronal capacities, have longer 

half-lives than levodopa, and can target specific subtypes of dopamine 

receptors[18]. However, they are relatively less effective in terms of controlling 

motor symptoms than levodopa; for this reason, they are typically used in 

managing early stages or young onsets of PD, or as an adjunct to levodopa to 

reduce its “off” periods as well as dyskinesia [11]. 

Although they have less motor complications, DAs are associated with other 

side effects such as somnolence, edema, and hallucination [19]; moreover, the 

long-term perceived quality of life for PD patients treated with either DA or 

levodopa did not significantly differ [20]. Today, whether the monotherapy of DA 

followed by levodopa or the use of low initial dose of levodopa along with DAs is 

more effective in the long-term is yet to be concluded [11]. Common DAs in use 

include bromocriptine (Parlodel), pergolide (Permax), pramipexole (Mirapex), 

ropinirole (Requip), piribedil, cabergoline, apomorphine, and lisuride. 

In the 1980s, a novel way of apomorphine administration - continuous 

subcutaneous apomorphine infusion (CSAI) - was introduced, which injected the 

drug through a portable pump around the waist or the neck. The main indication 

for CASI is severe PD with pronounced motor fluctuations, dyskinesias, and 

nocturnal akinesia [21]. It was found to be more effective in reducing ‘off’ periods 

and dyskinesia than its oral counterpart [22]. However, one of the most common 

complications of CSAI, affecting approximately 50% of CSAI-treated PD 

patients, is the development of skin nodules at the injection sites; they can be 

reduced by good skin hygiene and the use of Teflon cannula needle technology 

[23]. 

 

COMT inhibitors 

 

In addition to inhibitors of AADC, inhibitors of COMT - an enzyme 

responsible for the peripheral metabolism of levodopa - have been used as a 

complement to levodopa to increase its elimination half-life and thus the duration 

of ‘on’ periods in PD patients [24]. 

COMT inhibitors have been associated with side effects such as nausea, 

vomiting, and mild dyskinesia due to increased dopaminergic stimulation, but 

most complications are mild [25]; nevertheless, tolcapone - a type of COMT 

inhibitor - has been associated with the risk of fulminant liver failure, while its 

counterpart entacapone does not show hepatotoxicity [26]. For this reason, 

tolcapone has been removed from European and Canadian market [27]. 

Recently, it has been suggested that the combined use of COMT inhibitors 

with levodopa does not have benefits over using levodopa alone: in a double-blind 

trial of 747 PD patients, those who received entacapone with levodopa in fact 

displayed shorter time to onset and frequency of dyskinesia [28]. 

 

MAO-B inhibitors 

  

In 1983, Langston identified 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 

(MPTP)-derived Parkinsonism; MPTP, as a neurotoxin, is oxidized by 

monoamine oxidase-B (MAO-B) into MPP+, which is a toxic metabolite that 

kills dopaminergic neurons in the SNc [29]. MAO-B inhibitors - namely 



Open Science Journal 
Review  

Open Science Journal – November 2020  5 

selegiline(deprenyl) and rasagiline - were one of the first agents tested for their 

neuroprotective effects. In the 1989 clinical trial ‘Deprenyl and Tocopherol 

Antioxidative Therapy of Parkinsonism’ (DATATOP), selegiline was found to be 

able to significantly delay the time at which disease progression reached the stage 

that requires levodopa therapy; nonetheless, it was reported that whether the 

effects of selegiline were symptomatic or truly neuroprotective is unclear [30]. 

Similarly, in a 2005 clinical trial, rasagiline was demonstrated to be effective 

as a supplementary treatment to levodopa; it increased the duration of “on” time 

without dyskinetic side effects and the overall perceived quality of life, with 

dopaminergic side effects similar to those of the placebo group [31]. The potential 

neuroprotective function of rasagiline has been largely attributed to its ability to 

reduce the release of cytochrome C by closing the mitochondrial transition pore, 

modify pro-antiapoptotic genes and proteins, and inhibit the nuclear 

translocation of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) [32]. 

Nonetheless, the US Food and Drug Administration (FDA) concluded in 2011 

that there is insufficient evidence that supports the potential neuroprotective 

effects of rasagiline in PD [33]. 

 

 

Revival of surgeries 
 

In the late 1980s, ablative therapies, which were largely abandoned since the 

advent of levodopa in 1960, began to receive renewed attention. This was largely 

due to the limited efficacy of levodopa stemming from its motor complications 

and fluctuations, new understanding that the hyperactivity of subthalamic 

nucleus(STN) and internal globus pallidus (GPi) in PD could be controlled by 

STN lesions from MPTP primate models [34], and the development of novel 

neuroimaging techniques such as CT and MR [11]. 

After the report that the GPi is hyperactive in non-human primate models of 

PD [35], pallidotomy creating lesions in the GPi has received attention as an 

option for treating advanced PD patients. Unilateral pallidotomy was found to 

improve tremor, rigidity, bradykinesia, gait, and balance in 36 PD patients 

compared to those treated with medical therapy, and the effect was sustained 2 

years after the intervention [36]. A review article reported that the risk of adverse 

events following unilateral pallidotomy was about 30% with the most frequent 

being speech problem and facial paresis, and the mortality rate was 1.2% [37].  

Alternatively, subthalamotomy - which targets the STN - was found to 

improve parkinsonism in MPTP primate models [38]; however, in another study, 

unilateral subthalamotomy resulted in 16% of the subjects developing permanent 

dyskinesia as well as hemiballism and hemichorea [39]. 

Due to high risks of developing surgical complications following invasive 

ablative surgeries, thalamotomy, pallidotomy, and subthalamotomy have been 

mostly replaced by Deep Brain Stimulation in most countries. 

 

 

Deep brain stimulation 
 

DBS was first introduced by Benabid and colleagues as a less destructive 

alternative to lesioning procedures in 1987 [40]. It is the implantation of a 

continuous electrical stimulation device, which sends impulses to the STN or GPi 

to mitigate PD-related motor symptoms and dyskinesia [41] Neuronal 
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degeneration in the substantia nigra and the following  dopamine deficiency lead 

to an excessive excitation of GPi by the STN; the resulting inhibition of the 

thalamus reduces thalamocortical activity, which mediates various motor 

symptoms of PD. DBS is said to interfere with this pathophysiologic pathway, 

but the exact mechanism of action is unknown to date. Proposed mechanisms of 

DBS include the inhibition of neurons near the electrode to manage the output 

pathway, effect on the neurochemical state of the CNS, the disruption of PD-

related pathological oscillations, and the induction of synaptic plasticity [42]. 

DBS has advantages over ablative therapies as it is reversible without 

destroying the brain tissue, and over continuous infusions as no lines, needles, or 

portable pumps are necessary. The effectiveness of DBS has been demonstrated 

in a study in which advanced PD patients experienced an increase of 4.6 hours a 

day of ‘on’ period, 71% rise in motor improvement, and increased quality of life 

[43]. Its beneficial effect is known to persist for at least 3 to 5 years after DBS 

[44]. 

No significant difference between DBS in the STN and GPi has been reported 

in both the motor function and quality of life; although patients treated with 

STN DBS required less dopaminergic medications and had a greater decrease in 

visuomotor speed, there was no significant disparity in the occurrence of long-

term adverse events between patients treated with STN DBS and those treated 

with GPi stimulation [45]. 

Despite the absence of major lesions, DBS has been associated with significant 

surgical complications including infection, hemorrhage, seizure, pulmonary 

embolism, cerebrospinal fluid (CSF) leak, confusion or disorientation, and death 

[46]. DBS requires chronic implantation of electrodes and pulse generators, from 

which hardware complications frequently occur. In a review of 360 PD patients 

who received DBS therapy, complications of lead replacement or repositioning 

(due to fracture, malfunction, or dislocation), extension wire replacement, pulse 

generator replacement, and allergic reactions have been identified [46]. Although 

cognitive or behavioral complications related to electric stimulation have been 

relatively mild, it is suggested that DBS in the STN may be associated with the 

development of apathy [47]. Such condition is hypothesized to be triggered by a 

sudden postsurgical decrease in dopaminergic medication, and may be mitigated 

by an increased dosing of drugs [48]. Other potential complications include an 

increase in suicidal rate [49] and exacerbation of restless legs syndrome [50]. 

Current studies focus on increasing the precision and efficacy of DBS; for 

instance, there is mounting interest in the development of a closed-loop DBS, 

where stimulation can be turned on and off based on the presence of an increased 

oscillatory activity in PD patients [51]. The notion of increasing the anatomical 

specificity and adaptability of non-invasive DBS, such as transcranial magnetic 

stimulation and focused ultrasound, is also gaining interest [52].  

It is believed that a better understanding of the mechanisms involved in the 

reduction of PD motor symptoms via DBS will open up new applications and 

target sites for DBS. 
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Figure 1: Algorithm for the choice of medical and device-assisted treatment for PD. Originally based on the study 

of Dietrichs and Odin [53], with modifications made by the author. (PD: Parkinson’s Disease; MAO-Bi: MAO-B 

inhibitors; COMTi: COMT inhibitors; DBS: Deep Brain Stimulation; LCIG: Continuous levodopa-carbidopa 

intestinal gel infusion; CSAI: continuous subcutaneous apomorphine infusion) 

 

Rehabilitation 
  

 Rehabilitation is considered an adjunct to pharmacological and surgical 

therapies, in order to maximize functional ability. Although exercise cannot slow 

the progression of motor dysfunctions, it can improve functions in certain motor 

tasks[54] and alleviate a few nonmotor symptoms[55]. Regular physical exercise 

programs and physiotherapy may improve rigidity, hypokinesia, flexibility, gait, 

strength, and quality of life[56]. Lee Silverman Voice Treatment (LSVT), which 

aims to maximize vocal loudness, has been found to be effective for patients with 

dysarthria and hypophonia[57]. Occupational therapy often accompanies 

physiotherapy, and is found to improve self-perceived performance of daily 

activities and the quality of life[58]. 

 

 

Future prospects 
 

Non-dopaminergic agents 
 

Despite the remarkable effect of medicinal therapies, PD patients experience 

severe motor complications and fluctuations that significantly harm their quality 

of life. Thus, the use of non-dopaminergic agents for symptomatic relief has been 

extensively investigated.  
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Glutamate antagonists 

 

N-Methyl-d-aspartate (NMDA) glutamate receptors can be inhibited by 

glutamate antagonists such as amantadine and memantine, which can 

theoretically reduce the GABAergic inhibition of the thalamus and thus reduce 

motor symptoms. Amantadine has been shown to have antidyskinetic effects in 

PD patients [59], sustained for at least a year following the intervention [60]. 

Nonetheless, the development of psychiatric side effects has limited the use of 

glutamate antagonists in clinical settings [61]. 

Riluzole has also been shown to reduce dyskinesia with better patient 

toleration [62] and have neuroprotective effects on dopaminergic neuron in MPTP 

primate models [63], but in a 2002 clinical trial no significant change in Unified 

Parkinson Disease Rating Scale (UPDRS) motor score was observed [64]. 

 

Adenosine A2A antagonist 

 

Antagonists that target adenosine A2A receptors in striatal cholinergic 

interneurons, namely istradefylline, have been reported to significantly reduce the 

“off” time in PD patients [65]. Further investigation of adenosine A2A antagonists 

is being delayed, with the absence of approval from the US FDA [66].  

Other non-dopaminergic agents under investigation include: opioid 

antagonists, serotoninergic 5-HT2C agonists, cannabinoid CB1 agonists, ɑ2-

antagonists, dopamine uptake inhibitors, selective muscarinic antagonists, and 

nicotinic agonists [8]. However, most drugs have failed to be translated from 

preclinical to clinical trials due to inconsistent results [11]. 

 

 

Restorative therapies 
 

Neural transplantations 

 

For more than 2 decades, there has been a continuous effort to develop a 

therapy based on the restoration of dopaminergic neurons. The transplantation of 

fetal-derived mesencephalic dopaminergic cells showed some promising results 

with motor symptoms improving in younger patients; however, the majority of 

the patients developed “off” period dyskinesia that persisted even after medication 

withdrawal [67]. 

Alternatively, replacement therapies using human embryonic stem cells 

(hESC) and induced pluripotent stem cells (iPSC) have shown potential with 

derived neurons surviving in vivo in animal trials [68], but are in the process of 

clinical application. 

Such stem-cell based therapies face inevitable safety concerns, as there is a 

danger of tumor formation due to an overgrowth or genetic abnormalities in the 

graft [69]. Moreover, creating patient-specific iPSCs by reprogramming somatic 

cells is highly cost-consuming [69]; thus, sufficient trials and investigations to 

ensure safety and affordability would be required. 

Recent research interests have been directed to the direct lineage 

reprogramming of glial cells to dopaminergic neurons, as it has benefits of no 

ethical concerns, no risk of tumor formation, and no requirement of 

transplantation [70]. 
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Gene therapies 
 

Viral vector gene delivery 

 

Restoration of dopamine has been attempted with gene therapies, by using 

adeno-associated virus vectors (AAV) to deliver genes coding for dopamine 

biosynthetic enzymes - aromatic amine decarboxylase (AADC), tyrosine 

hydroxylase, and cyclohydrolase-1 - into the striatum [69]. Several phase I trials 

for the delivery of AADC via AAV into the putamen showed increased “on” time 

for PD patients and thus the safety of the intervention [71,72,73]. Moreover, the 

delivery of AADC, tyrosine hydroxylase, and cyclohydrolase-1 into the putamen 

using lentivirus vectors - which have a larger potential genetic cargo compared to 

AAV - resulted in a significant increase in Unified Parkinson Disease Rating 

Scale (UPDRS) motor scores [74]. 

Alternatively, gene encoding glutamic acid decarboxylase (GAD), an enzyme 

responsible for the synthesis of gamma-aminobutyric acid (GABA), has been 

delivered to the STN using AAV in the hope of reducing STN hyperactivity [75]. 

The AAV-GAD group showed significant improvement in the UPDRS motor 

scores compared to the sham group, with mild adverse events. 

 

Restorative gene therapies 

 

AAV has also been used in restorative gene therapies; glial cell line derived 

neurotrophic factor (GDNF), which is responsible for the differentiation and 

maintenance of dopaminergic neurons, has been delivered to the putamen using 

AAV under MRI-guided administration, resulting in an increased GDNF 

expression without clinical or radiographic toxicity [76]. However, phase II trial of 

AAV delivery of neurturin, a natural analogue of GDNF, has shown insignificant 

increase in UPDRS motor score compared to that of the sham group [77].  

 

 

Alpha-synuclein based therapies 
 

After the first identification of mutations in the SNCA gene coding for alpha-

synuclein as the first genetic cause of PD in 1997 [78], it was found that alpha-

synuclein was the main composition of Lewy bodies and Lewy neurites in PD 

[79]. Since then, various experimental approaches have been tested to reduce the 

neurotoxicity of alpha-synuclein aggregates. 

 

Reducing alpha-synuclein production 

 

One approach to the alpha-synuclein therapy is reducing the translation of the 

protein through RNA interference, where exogenous synthetic RNA molecules 

trigger the knockdown of the alpha-synuclein mRNA [80]. For instance, the 

introduction of a small-interfering RNA (siRNA) directed against alpha-synuclein 

in a mouse model led to the reduction of alpha-synuclein expression [80]; 

moreover, a similar study conducted in non-human primate models resulted in a 

40-50% reduction in alpha-synuclein expression. 

In an alternative perspective, the alpha-synuclein gene can be silenced to 

reduce the transcription of the mRNA. β2-adrenergic receptor agonist - namely 

clenbuterol - has been reported to reduce alpha-synuclein gene expression by 



Open Science Journal 
Review  

Open Science Journal – November 2020  10 

35%, and a potential association with a reduction of developing PD has been 

identified [81].  

A point of consideration in these methods is that the inhibition of alpha-

synuclein expression may lead to a loss of the protein’s normal physiological 

function, which is hypothesized to be related to a number of roles including the 

suppression of apoptosis [82], regulation of glucose levels [83] and dopamine 

production [84], chaperone activity [85], and antioxidation [86]. This is supported 

by studies that observed neurotoxicity and neurodegeneration in the SNc of 

alpha-synuclein silenced models [87]. 

 

Increasing alpha-synuclein clearance 

 

Immunotherapies aimed at degrading extracellular alpha-synuclein aggregates 

are currently being actively investigated in preclinical as well as clinical trials. In 

a phase I clinical trial of an immunotherapy vaccine containing alpha-synuclein-

mimicking peptides, the vaccine was found to trigger immune response against 

the peptide as well as extracellular alpha-synuclein without significant 

complication [88]. Moreover, anti-alpha-synuclein monoclonal antibodies were 

shown to reduce alpha-synuclein levels in healthy human subjects without 

adverse events and neurotoxicity [89], and are currently being tested against 

early PD patients in a phase II trial.  

In terms of intracellular alpha-synuclein, the lysosome-autophagy system that 

can clear alpha-synuclein aggregates via autophagy can be enhanced to reduce 

alpha-synuclein accumulation. This idea has been supported by the study 

showing that rapamycin, an agent that induces macroautophagy, is able to 

reverse alpha-synuclein accumulation [90]. Other autophagy enhancers such as 

trehalose and nortriptyline are currently being studied as potential subjects for 

clinical trials [69]. 

 

Neuroprotective therapies 

 

Neuroprotective therapies are aimed at slowing or stopping disease 

progression. Of particular interest is exenatide, which is a glucagon-like peptide-1 

(GLP-1) receptor agonist typically used in the improvement of glycemic control 

in type 2 diabetes mellitus patients. Its ability to protect neurons from metabolic 

and oxidative stress has been demonstrated in rodent models of PD, created by 

6-hydroxydopamine (6-OHDA), lipopolysaccharide (LPS) [91], and MPTP [92]. 

Moreover, in a phase 2 clinical trial, PD patients that received subcutaneous 

administration of exenatide showed a slight improvement of symptoms during the 

“off” period; however, a relatively small sample size and short trial duration limit 

the study’s implications and thus would need further investigation [93]. 

In addition to the MAO-B inhibitors, NMDA glutamate receptors, 

neurotrophic factors, and exenatide, several agents are being investigated for 

their potential neuroprotective effects on PD. They include iron chelators (i.e. 

deferiprone) [94], calcium channel blockers (i.e. isradipine) [95], coenzyme Q10 

with antioxidative effects, antiapoptotic agents (i.e. inosine) [96], and nicotine. 

However, none of them are found to be truly neuroprotective to date. 
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Conclusion 
 

Since the 1817 introduction of PD by James Parkinson, significant strides 

have been made not only in the development of effective treatments, but also in 

the understanding of the potential mechanisms of the disease and the creation of 

models to test them. However, the exact etiology of the disease and a therapy 

that can reverse disease progression are yet to be determined. 

Existing treatments for PD are palliative in nature, focusing on the relief of 

dopaminergic motor symptoms and the simultaneous reduction of drug related 

complications such as dyskinesia and motor fluctuations. Such debilitating side 

effects and the resulting reduction of the efficacy of medicinal therapy in 

advanced PD indicate the pressing need for the development of a treatment of 

which the therapeutic effect can be persisted continuously. In this context, it is 

suggested that active research is required in the direction of elucidating the 

fundamental factors responsible for the pathogenesis of the disease, such as the 

dynamics of alpha-synuclein fibrillation and mitochondrial defects. This will 

ultimately lead to the creation of curative treatments addressing the cause of PD 

to permanently halt or reverse neurodegeneration. 
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