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Chromium doped Tin oxide nanoparticles with chromium 

concentrations ranging from 1 to 5 wt% were synthesized by 

microwave irradiation technique. Standard characterization 

techniques were used to understand the characteristics of the 

nanoparticles obtained. X-Ray Diffraction (XRD) pattern 

depicted the tetragonal crystal structure for Cr doped SnO2 

nanoparticles. From the results of crystallite sizes for various 

doping concentrations, it was observed that doping inhibits the 

growth of crystalline grains of SnO2. Scanning Electron 

Microscope (SEM) images confirmed the surface morphology 

modifications due to varying doping concentration of Cr, 

nanocrystallite showed extra agglomerated status with 

mesoporous structures. Energy dispersive spectrometer (EDAX) 

observations confirmed the doping of chromium ions in SnO2 

lattice.  Other standard characterization techniques such as 

FESEM, TEM, HRTEM, FTIR, UV-Vis spectroscopic analysis 

were also carried out for the samples prepared. The 

electrochemical behavior of the sample was determined using 

Cyclic Voltammetry (CV) by scanning the potential at a rate of 

50 mV s‾¹ and for a maximum current of 600 mA carried out on 

undoped SnO2 and Cr doped SnO2. It was observed that as the 

wt% of Cr in Cr doped SnO2 increases, the electrochemical 

performance increases as compared to undoped SnO2. A fairly 

larger peak current of 15 μA and a larger oxidation peak 

potential of 0.76 V were observed for 5 wt% Cr doped SnO2. 
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Introduction 
 

Nanostructured metal-oxide semiconductor based sensors have wide 

applications in biological, environmental and analytical chemistry (1–5). Among 

the oxide semiconductors, tin oxide (SnO2) is one of the promising candidates as 

a host material that has been used in gas sensors, dye-sensitized solar cells, 

electrochromic windows, transparent conducting electrodes, transistors, catalysts 

and supercapacitors (6–10). SnO2 is a versatile material with a wide band gap 

(3.6 eV at 300 K) in its stoichiometric form, but due to lattice imperfections and 

oxygen vacancies arising during its production,it becomes n-type and conductive 

(9,11–13). SnO2 material research has been of considerable interest because of its 

combined properties of plentiful oxygen vacancies, high optical transparency, 

chemical and electrochemical stability, good electrocatalytic activity, nontoxicity, 

good biocompatibility, and high electron communication features when doped 

(14). Chemical doping with appropriate elements (Fe, Cr, Co, Mn, Ni, etc.) is 

widely used as an effective method to tune surface states, energy levels of 

semiconductors and transport performance of carriers which enhances the 

electrical, electrochemical and magnetic properties of materials (12,14). The ionic 

radius of Cr3+ is close to that of Sn4+ (15,16), which means that Cr3+ can easily 

penetrate into the SnO2 crystal lattice or substitute the Sn4+ position in the 

crystal. Various methods have been used to synthesize the SnO2 nanostructures; 

Autoclave method, co-precipitation, pulsed laser deposition, spray pyrolysis, solid 

state reaction method, polymeric precursor's route, hydrothermal method etc. 

(17–21). However, it still remains a great challenge to develop a simple method 

for fabricating nano-SnO2, particularly metal ion doped SnO2 nanostructures with 

controlled morphology. Herein we report the synthesis of Cr doped SnO2 

nanoparticles by a simple microwave irradiation method that takes only a few 

minutes to complete the reaction with prevented agglomeration. 

 

 

Experimental details 
 

Materials 
 

Chromium (III) nitrate nonahydrate [Cr(NO3 )3∙9H2O] and Stannous (II) 

Chloride dihydrate [SnCl2∙2H2O] from Fischer Scientific, were the starting 

materials used without further purification. Phosphate Buffer solution (PBS), 

Ammonium Hydroxide (NH4OH) and ultrapure deionized water was used as 

solvent. 
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Nanoparticle synthesis 
 

The growth solution of SnO2 is prepared by dissolving 0.1M Stannous (II) 

Chloride dihydrate [SnCl2∙2H2O] in deionized water, Ammonium hydroxide (NH4 

OH) was added drop wise (about 1 drop per 3–4 s) to the above solution until 

the pH reached 10. This solution was again stirred for 30 minutes to form a 

greenish colloidal gel. Further, the hydroxide product was washed several times 

with deionised water and ethanol in order to remove the excess Cl- and NH4+ 

ions. Then the precipitate containing beaker was transferred into a microwave 

oven (600 W) and kept for 20 minutes. The product obtained is tin hydroxide 

which is calcinated at 800 °C for 4 hour to get the tin oxide nanoparticles. For 

doping approximate amounts of [Cr(NO3 )3∙9H2O] with different Cr (1% , 3% and 

5% by wt) content were mixed with Stannous (II) Chloride dihydrate [SnCl2∙2H2 

O] in deionized water, Ammonium hydroxide (NH4OH) was added drop wise 

until the pH reached 8 for all doping concentrations. Then the precipitate was 

washed with ethanol to remove excess Cl- and NH4+ ions and the beakers were 

transferred into microwave oven (600 W) and kept for 20 minutes. Finally, the 

Cr doped SnO2 nanopowders were obtained after annealing the precipitates at 

600 oC for 5 hours in an ambient atmosphere. 

 

 

Results and discussions 
 

XRD Analysis 
 

Figure 1 shows the results of XRD analysis of the undoped SnO2 and Cr 

doped SnO2 Nanoparticles obtained using Microwave Method. 

 

 

 
Figure.1: XRD patterns of (a) undoped SnO2, (b) 1 wt%, (c) 3 wt%, and (d) 5 

wt% Cr doped SnO2 nanoparticles 

 

 

The XRD patterns of undoped SnO2 exhibit diffraction planes along (110), 

(101), (200), (211), (220), (310), (112), (301) and (321), which is consistent with 

rutile-type phase and tetragonal unit cell of SnO2 (ICDD-PDF card no.46-0255). 

From figure 1 it is observed that there is increase in the peak intensities for Cr 

doped SnO2 with no extra phase as the Cr concentration increases and is depicted 

that chromium ions substitute tin ions in tin oxide lattice. The observed 
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shrinkage of the unit cell volume is consistent with the fact that the ionic radius 

and valence of Cr³+ (63 °A) is smaller than that of Sn4+ (74 °A). The XRD 

results showed that the Cr³+ ions incorporate into SnO2 lattice or replace Sn4+ 

sites without changing the rutile structure. The average crystallite size (D) was 

determined using the diffraction peaks of (110) and (101) from Scherer's formula 

        (1) 

(22,23). Where K is the shape factor whose value is taken as 0.89, λ is the 

wavelength of Cu Ka radiation, and β is the corrected full width at half 

maximum (FWHM) of the diffraction peak and θ is the diffracting angle. The 

average crystallite sizes of the synthesized nanoparticles were 17.88 nm 

(undoped), 26.41 nm (1% by wt), 28.50 nm (3% by wt) and 49.46 nm (5% by wt) 

respectively. These results indicate that the crystallite size of the Cr doped SnO2 

nanoparticles increase as the doping concentration increases. 

 

 

Scanning electron microscopy (SEM) analysis 
 

Figure 2 shows the SEM images of undoped and Chromium doped SnO2. It is 

observed that the prepared SnO2 particles are nanorods with some agglomeration, 

which may be due to annealing of SnO2 nanoparticles (NPs). However there is 

some non-uniformity in the shape and the existence of porosity. The measured 

mean particle size of the tin dioxide particles from the SEM image is 47.8 nm, 

which is comparable to XRD values determined for the particle size. A relatively 

uniform mixture of tetragonal like structures could be observed and the 

nanocrystallite showed extra agglomerated status with mesoporous structures. 

Elemental analysis of NPs was done by using energy dispersive spectrometer 

(EDS) the plot of spectrum is shown in Figure 4. Emission peaks such as O and 

Sn observed in the EDS spectrum shows the presence of tin and oxygen elements 

and confirmed the stoichiometry of NPs. 

 

 
Figure. 2: SEM images for undoped and Cr-doped Tin Oxide 
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Field emission scanning electron microscopy (FESEM) analysis 
 

Field Emission Scanning Electron Microscope (FESEM) was used to observe 

the morphology and structure changes. Figure 3 show that doping significantly 

alters the morphology of the nanorods. The surface of the SnO2 particles with 1% 

Cr doping are nano rods as shown in Figure 3(a), the grain size formed and 

surface modifications by increasing the concentration to 3 wt% is shown in Figure 

3(b),  modification of surface are also evident on increasing the Cr dopant level 

to 5 wt%, it is observed that the grain size formed on the surface of SnO2 film 

decreases on increase of Cr dopant (Figure 3(c)). Further large regular 

rectangular and triangular shaped grains are formed on the surface of SnO2 and 

the size of grains decrease with increasing dopant concentration. 

 

 
Figure. 3: FESEM Images of (a) 1wt% (b) 3 wt% and (c) 5 Wt% Cr doped SnO2 

 

 

Energy dispersive analysis of X-Ray (EDAX)  
 

Figure 4 shows the compositional analyses of the Cr doped samples as 

depicted in the EDX spectra. The spectra show chromium peaks implying 

incorporation of Cr ions into SnO2 lattice. Furthermore, Hume-Rothery rules of 

substitutional solid solution suggest that substitutional incorporation of dopant is 

possible if the ionic radii of the host atom and the dopant  must not differ by 

more than 5% (24–26). In this investigation, the ionic radii of Sn4+ and Cr3+ are 

0.069 and 0.063 nm, respectively, which are well within 5% difference. This shows 

that Cr ions substitutionally replace Sn ions in the SnO2 lattice. 

 

 
Figure 4: EDAX spectra of (a) 1 wt% (b) 3 wt% and (c) 5 Wt% Cr doped SnO2 
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Fourier transform infrared (FTIR) spectroscopy 
 

FTIR analysis is carried out in the wavenumber range from 450 cm-1 to 4000 

cm-1. The samples are with KBr, thoroughly mixed and pelletized by pressing 

under sufficient pressure, before FTIR analysis. FTIR spectra of SnO2 

nanoparticles prepared at 600 °C are shown in Figure 5. The broad peak centered 

at 619 cm-1 is observed. The broad band between 800 and 500 cm-1 was due to 

the vibrations of Sn-O. To obtain more details of defects in SnO2:Cr films FTIR 

is employed. The main IR features of SnO2 at 468 and 619 cm-1 are assigned to 

O–Sn–O and Sn–O stretching vibrations, respectively. Two interesting features 

are observed: One is the weak feature of O–Sn– O vibration in the undoped SnO2 

film, which goes with the presence of vibration at 644 cm-1. This vibration 

becomes weakened and disappears as the Chromium (Cr) concentration increases; 

the other characteristic is the presence of Sn–Cr feature at high doping levels, 

which causes the splitting of O–Sn–O feature. A band corresponding to the 

presence of adsorbed water (H2O) 1630~1640 cm-1 and hydroxide absorption 

(OH) bands in the range of 2500~3500 cm-1 were observed. 

 

 
Figure 5: FTIR spectra of undoped SnO2 and Cr doped SnO2 

 

 

Transmission electron microscope (TEM) analysis  
 

Typical TEM and high-resolution transmission electron microscope (HRTEM) 

images of undoped and 5 wt% Cr doped SnO2 samples are shown in Figure 6 (a 

& c) a spherical morphology with average size of 21nm and 16 nm respectively is 

observed the results are in good agreement with the estimated average crystallites 

size from the XRD pattern. The HRTEM image for undoped and 5 wt% Cr 

doped SnO2 nanoparticles are shown in Figure 6 (b & d). Undoped SnO2 

nanocrystallites exhibited highly symmetrical and sharp lattice lines which 

confirm their single crystalline and defect free nature. However, Cr-doping seems 

to introduce twin-like defects in the crystallites as shown in Figure 6(d). Further, 
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presence of any secondary phase or trace elements in the samples is not identified 

using HRTEM. 

 

 

 
Figure 6: TEM image of (a) undoped SnO2, (c) 5 wt% Cr doped SnO2 

nanoparticles & HRTEM images of (b) undoped SnO2, (d) 5 wt% Cr doped SnO2 

nanoparticles 

 

Optical band-gap using UV-Visible spectrophotometer  
 

From the transmittance spectra shown in Figure 7 the Optical band gap 

values were obtained using the Tauc’s formula (27). For  undoped Sno2 band gap 

is 3.58 eV which is in good agreement with the reported values of Arun kumar 

sinha (11) it is observed that Cr doping has a positive influence on the 

temperature dependent of resistance. 
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Figure 7: Band gap energy of (a) undoped SnO2, (b) 1 wt% (c) 3 wt% and (d) 5 wt% Cr 

doped SnO2 nanoparticles 

 

Cyclic voltammetry analysis 
 

The electrochemical behaviour of the sample is determined using Cyclic 

Voltammetry (CV) by scanning the potential at a rate of 50 mV s‾¹ and for a 

maximum current of 600mA carried out on undoped SnO2 and Cr doped SnO2. 

From figure 8 it is observed that for undoped SnO2 (Figure 8(a)) the peak 

current is 11 μA  for doping concentration of 1wt % the peak current is 12 μA for 

doping concentration of 3 wt%  the peak current is 13 μA, as the wt% of Cr in 

Cr doped SnO2 increases, the electrochemical performance increases as compared 

to undoped SnO2, a fairly larger peak current of 15 μA and a larger oxidation 

peak potential of 0.76 V were observed for 5 wt% Cr doped SnO2. 
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Figure 8: Cyclic Voltammetry of (a) undoped SnO2, (b) 1 wt% doped (c) 3 wt% 

doped and (d) 5 wt%  Cr-doped SnO2 nanoparticles 

 

 

Conclusion 
 

Undoped and Cr doped SnO2 nanoparticles were synthesised using microwave 

irradiation method. The influence of Cr doping concentration on the structure, 

morphology, optical and electrochemical properties are reported. XRD patterns of 

undoped sample revealed the pure tetragonal rutile structure of SnO2. UV 

Spectroscopy shows decreasing band gap of SnO2 by addition of Chromium. The 

cyclic voltammetric (CV) studied confirmed that Cr doped sample have good 

electrochemical behaviour when compare to pure SnO2 sample. 
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