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Limit Analysis is an prescribed exact approach of Wood Science, 
what is shown to also apply for wood Fracture Mechanics. 
Knowledge of the gradual elastic to plastic behavior and of the 
imitation by non-linear elasticity (and J-integral) is shown to be 
not needed. The linear – full plastic limit approach delivers an 
elastic lower bound, up to this full plastic boundary, the 
fracture- or yield criterion, where ultimate load behavior is 
described, by virtual work approach and “flow” by the normality 
rule. This delivers the possibility to look at any equilibrium 
system, which satisfies compatibility and boundary conditions 
and nowhere exceeds this “flow” criterion and is verified by test 
data. Because the accepted singularity approach does not deliver 
a right mixed mode fracture criterion, it is necessary to make 
comparisons with other possible Airy stress functions. Therefore, 
the derivation of the accepted, general applied, elementary 
singularity solution with its 3 failure modes, is discussed and 
compared with new theory. This new limit analysis theory is 
based on an older, forgotten, Airy stress function, and shows 
e.g., by the new approach and application to wood, that there is 
no real difference between strength theory and fracture 
mechanics and between linear and non-linear theory. It delivers 
the, empirical verified, exact mixed mode failure criterion for 
wood; shows that stresses in the isotropic wood matrix also have 
to be regarded separately, to explain the, only by isotropy, 
possible, extremely high triaxial hydrostatic stress, and stress 
increase by the stress spreading effect.  
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Introduction 
 

A right, exact, failure criterion is an indispensable part of the strength 
calculation of design. Such, so called, mixed mode fracture criterion is lacking in 
the generally applied singularity approach. This is discussed in § 3 and leads to 
the analysis of the inconsistencies of the separate failure modes description. It is 
shown in § 6, that the right singularity equations follow from transformation to 
polar coordinates of the exact limit analysis equations of § 4.  

Based on extended strength research on clear wood and timber, [1][2][3][4] and 
fracture mechanics research of e.g. [5] and [6], it appeared that the failure 
criterion of strength theory is of the same form as the fracture mechanics critical 
crack extension criterion, (see § 4). This shows strength theory to be the initially 

Therefore the stresses and strengths of the isotropic wood 
matrix are derived. The transformation to total stresses, 
including the reinforcement is shortly given for the empirical 
verification and for literature reference. Therefore, only the 
derivation of the necessary corrections of the singularity 
approach, for isotropic material, is regarded. This leads to a 
necessary rejection of the, tree failure modes, singularity 
approach of Irwin and of associate equations. By the splitting in 
3 modes, there is no compatibility and no mixed mode fracture 
criterion. Instead there are tree, each excluding, Airy stress 
functions, thus 3, each excluding, compatibility equations. 
Necessary is one mixed mode solution for the total load. Then 
the solution also is known for separate acting (thus non zero) 
loading components. This is done in § 4, necessarily in elliptic 
coordinates, to know failure, by the highest tangential, uniaxial 
tensile stress in the crack boundary. The tangential direction in 
polar coordinates is not tangential to the elliptic first expanded 
of the crack boundary. Therefore then not the right KIIc values 
are obtained. The expression in elliptic coordinates delivers (by 
the highest empirical correlation) the failure criterion of wood 
for every load combination. Transformation of this mixed mode 
solution to polar coordinates gives the corrected singularity 
method based on a mixed mode failure criterion and delivers 
also the definition of the stress intensity factor. This last also 
gives another interpretation of the Bazant curve, which is 
shown to be the initial mode I yield criterion.   
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small crack fracture mechanics theory. This is empirically confirmed in § 2, and 
thus the first discussed, because it is the starting point for the derivation of both, 
the singularity approach in § 3 and the exact approach of § 4.  

It was derived in the past [1], that the tensor-polynomial equation should be 
regarded as a polynomial expansion of the real failure surface in stress space. Also 
is shown, in e.g. [4], that the third degree polynomial is identical to the real 
failure criterion and that the second degree part of the polynomial is identical to 
the orthotropic extension of the von Mises criterion for initial yield by micro-
crack extension. Further was shown that the third degree polynomial hardening 
terms of the criterion incorporate the § 4 theoretical derived mixed mode I-II 
fracture equation, showing “hardening” to be based on the start of critical small-
crack extension, which is hindered by the reinforcement to follow the most 
critical direction. 

The clear wood results, of [1], are also discussed together with the biaxial data 
for timber of [2], in e.g. [3], as result of a co-operative project. By that, all aspects 
of the failure criterion are known and are presented e.g. in [4] and empirically 
confirmed, e.g. in § 5. Needed is still the here given discussion of the singularity 
approach with the necessary replacement for an exact approach.  

A short introduction, to refer to, of the general applied calculation method is 
first needed.  

Fracture by flat initial cracks is a two-dimensional problem and the boundary 
value approach should be based on the equilibrium equations and the 
compatibility condition in strains: 

2 22

2 22 xy yx

x y y x
γ εε∂ ∂∂

= +
∂ ∂ ∂ ∂

                (1.1)  

Substitution of the stress-strain relations in eq.(1.1), gives: 

( ) ( )
2 2 22 2

2 2 2 21 3 8y y xyx x

y x x y x y
σ σ τσ σ

χ χ
⎞⎡ ⎤ ⎡ ⎤ ⎛∂ ∂ ∂∂ ∂

+ + + − + = ⎟⎜⎢ ⎥ ⎢ ⎥ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎝ ⎠
                        (1.2) 

where χ = 3 - 4υ for plane strain and χ = (3 – υ)/(1 + υ) for plane stress, and 
υ is Poisson’s ratio. The stresses should satisfy the equilibrium equations which 
are after differentiation:  

 
2 22

2 2
xy yx X Y

x y x x y y
τ σσ

ρ ρ
∂ ∂∂ ∂ ∂

= − − = − −
∂ ∂ ∂ ∂ ∂ ∂

,                                           (1.3)  

where ρ is the density of the body, of the body force.  
Substitution of eq.(1.3) in eq.(1.2) gives:  

( ) ( )
2 2

2 21 4 0x y
X Y

y x x y
χ σ σ ρ

⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂
+ + + + + =⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦⎣ ⎦

                               (1.4)  

If body forces X and Y are derived from a potential V, so that:  

,V V
X Y

x y
∂ ∂

= − = −
∂ ∂

 ,                                                      (1.5) 

then eq.(1.4) becomes: 
( )2 0x yσ σ∇ + =  .                                                                  (1.6) 
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By the Airy stress function U is for equilibrium:  

 
2 2 2

2 2; ;x y xy
U U U

V V
y x x y

σ ρ σ ρ τ
∂ ∂ ∂

= + = + = −
∂ ∂ ∂ ∂

                               (1.7)  

and by substitution in eq.(1.6), the compatibility equation becomes:  
   ( )2 2 0U∇ ∇ =                  (1.8) 

or: 

  
4 4 4

4 2 2 42 0U U U
x x y y

∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂
               (1.9) 

Important is that for compatibility of shear- and normal strains, eq.(1.2) or 
eq.(1.8) has to be applied for a solution. This is lacking for the total load in the 
singularity approach. In the following equations, the dash on top means, that it is 
the conjugate complex. Thus:  

 
is the conjugate complex of: ζ=ξ+iη. The derivative, always with respect to z, 

(z=x+iy)) is given by a slash. Thus, with aid of the Cauchy-Riemann equations, 
is: 

( )' d d d d d
z i i

dz dx dx dx dy
ζ ξ η ξ ξ

ζ = = + = −                       (1.10) 

The common textbook solution of the Airy stress function U is in terms of 
two analytic functions ϕ(z) and χ(z), where U is the real part of:  
 ( ) ( )z z zφ χ+ .,                                        

( ) ( ) ( ) ( )0.5U z z z z z zφ φ χ χ⎡ ⎤= + + +⎣ ⎦ ,              (1.11)  

                                                    
( ) ( ) ( ) ( ) ( ) ( )2 2/ 0.5[2 ' '' 2 ' '' '' '' ]x U y z z z z z z z zσ φ φ φ φ χ χ= ∂ ∂ = − + − − −      (1.12) 

 
( ) ( ) ( ) ( ) ( ) ( )2 2/ 0.5[2 ' '' 2 ' '' '' ' ]y U x z z z z z z z zσ φ φ φ φ χ χ= ∂ ∂ = + + + + +      (1.13) 

 
( ) ( ) ( ) ( )2 / 0.5[ '' '' '' '' ]xy U x y i z z i z z i z i zτ φ φ χ χ= −∂ ∂ ∂ = − − + −                  (1.14) 

 
From these equations follows:  

( ) ( )
2 2 2

2 22 2 2 '' ''y x xy
U U U

i i z z z
x y x y

σ σ τ φ χ
∂ ∂ ∂

− + = − − = +⎡ ⎤⎣ ⎦∂ ∂ ∂ ∂
                   (1.15) 

( ) ( ) ( )
2 2

2 2 2 ' ' 4 'y x
U U

z z R z
x y

σ σ φ φ φ
∂ ∂

⎡ ⎤+ = + = + = ⎡ ⎤⎣ ⎦⎣ ⎦∂ ∂
                    (1.16) 

Needed for § 4 and § 6 are transformations to curvilinear coordinates:  
( )z ω ζ= ,                (1.17) 

giving the function which connects point ζ=ξ+iη in the ζ–plane to z=x+iy in 
the z-plane.  

Then follows from the equations (1.16) and (1.15):  
( ) ( )2 ' 'x y z zξ ησ σ σ σ φ φ⎡ ⎤+ = + = +⎣ ⎦              (1.18) 

( ) ( ) ( ) ( ) ( )22 2 2 '' ' ' / 'i
y x xyi i e z z zδ

η ξ ξησ σ τ σ σ τ φ χ ω ζ ω ζ− + = − + = + ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦                (1.19) 

with:  
   ( ) ( )2 ' / 'ie δ ω ζ ω ζ= ( ) ( )cos 2 sin 2iδ δ= +                                (1.20) 

iζ ξ η= −   
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Differentiation, is with respect to z, thus: 

  ( )
( )
1'
'

d d dz
d dz d
φ ζ φ

φ
ζ ω ζ ζ

= =                                                      (1.21) 

For transformation, according to eq.(1.17), to elliptic coordinates, is:  
( ) ( ) ( )cosh coshz x iy c c iω ζ ζ ξ η= + = = = + = ( ) ( )cosh cosc ξ η    →  

  ( ) ( )/ ' sinhdz d cζ ω ζ ζ= = , →  ( ) ( )cosh cosx c ξ η= ,  ( ) ( )sinh siny c ξ η=          (1.22) 

Thus, for a constant ξ = ξo, the corresponding curve in the x, y plane is the 
ellipse:  

( ) ( )

2 2

2 2 2 2
0 0

1
cosh sinh
x y

c cξ ξ
+ =  ,                                           (1.23) 

with semi-axes:  a = ccosh(ξo),  b =csinh(ξo).,  . When  η = ηo  is constant, 
the curves are hyperbolae, confocal with the ellipses (see Fig. 1):  

( ) ( )

2 2

2 2 2
0 0

1
cos sin
x y

c cη η
− =                                                           (1.24) 

The focus distance is 2c. 

 
  

Figure 1 - Elliptic hole and elliptic coordinates [4] 
 
This problem of the infinite region with an elliptic hole, loaded by an uniaxial 

stress p inclined at β to the crack plane, was solved, in elliptic coordinates, by 
Stevenson [7] by the following functions: ϕ(z),  and  χ’(z) = ψ(z)  

( ) ( ) ( ) ( )0 02 2 24 cos(2 )cosh 1 sinhiz pce pc eξ ξ βφ β ζ ζ+= + −                         (1.25)                

( ) ( ) ( ) ( )( ) ( )02
0 04 [cosh 2 cos 2 sinh 2 ]cosz pc e i echξψ ξ β ζ ξ β ζ= − − + − −   (1.26) 

 
Then for a flat elliptic crack, ξo =0, is: 

( ) ( )( ) ( ) ( ) ( )cos 2 1 cos 2 sinh 2 sin 2 sin 2p pξ ησ σ β α β ξ β η⎡ ⎤+ = + − −⎣ ⎦        (1.27) 

( ) ( )( ) ( )( ) ( )( ) ( )2cosh 2 cos 2 [ 1 cos 2 cos 2 1 sinh 2p pξ ησ σ α ξ η β α β η ξ− = − + − − +
( ) ( )cosh 2 cos 2ξ β− ( )( ) ( ) ( ) ( )cos 2 cosh 2 sin 2 sin 2 ]η β ξ β η+ − −                 (1.28)  

          

( ) ( )( ) ( ) ( ) ( )( )20.5 sinh 2 sin 2 0.5 [sinh 2 sin 2 cos 2 1p pξητ α ξ β η α ξ β η= − + − +            

  ( )( ) ( )( ) ( )1 cos 2 cosh 2 1 sin 2β ξ η+ − −                                            (1.29)
                                                                

 
where    α = (cosh(2ξ) – cos(2η))--1                     (1.30) 

The transformation to polar coordinates is discussed in § 6. 
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Unity of strength theory and small crack fracture 
mechanics 

 
The interpretation of the strength data-line of Fig. 2, of geometrically similar 

specimens of Bazant, is to regard, the inclined line to represent LEFM theory, the 
horizontal line to be the maximal stress, strength theory and the curved, 
connecting line, to follow nonlinear fracture theory. However, there is no 
difference between nonlinear and linear elastic (LEFM) fracture mechanics. For 
both the linear elastic - full plastic approach of limit analysis applies. When a 
specimen is loaded until flow, the following unloading and reloading is elastic. 
This elastic reloading until full plastic flow represents the limit analysis approach. 
The elastic boundary to the full-plastic zone exists as failure criterion, by a single 
curve in stress space as given by Fig. 2. In this figure of e.g. [8], is d/d0, the ratio 
of specimen size to the fracture process zone size. But, because the line is the 
result of volume effect tests, the initial crack length is proportional to the test-
specimen length. Thus, d/d0,, also can be regarded to be the ratio: initial open 
crack length, to the process zone size. Then, for small values of d, this d/d0, ratio 
also may represent the critical small crack density in a macro specimen (because 
d also is the small crack interspace).  

The curved line of Fig. 2, follows the equation:  
                                                        (2.1)  

as result of a power law curve fitting. Eq.(2.1) therefore is:   

   →                    (2.2)  

—> ,     ,                                  (2.3) 

in accordance with eq.(4.11). This confirms that the curve represents the 
stress intensity as ultimate state with Kc as critical  stress intensity factor as 
should be for values of d/do >>1. For these higher values, the curved line 
approaches the drawn straight tangent line     

                       (2.4) 

 with the necessary slope of the curve:  

                                                         (2.5) 

as limit. The real slope however is 

:            (2.6) 

This slope is: – 0.5 for  d >> do and this slope is zero when d = 0. This shows 
that for the whole curve LEFM applies and it is an indication that, at zero open 
crack dimensions, thus for: d = 0, the clear wood ultimate strength theory still 
follows LEFM, because it applies also for the constant initial length do (the 
constant fracture process zone length). After first yield drop, to half way 
unloading, maximal spreading is reached, and the strength theory further applies 
[4] for further unloading by crack extension. Similar to steel, where yield drop is 
due to dislocation multiplication and dislocation breakaway, applies for wood, 
that the start of yield drop is due to micro-crack multiplication (as fracture 

( )0 0ln ln 0.5ln 1 /d dσ σ= − +

0.5 0.5

0 0

0 0 0

ln ln lnd d d
d d d

σ
σ

−
⎞ ⎞ ⎞⎛ ⎛ ⎛+
= =⎟ ⎟ ⎟⎜ ⎜ ⎜

+⎝ ⎝ ⎝⎠ ⎠ ⎠

0 0 0( ) cd d d Kσ π σ π+ = =
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σ σ∂
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∂
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00
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ln( / ) ( / ) ( / ) ( / ) 1 / 1 /

d dd d
d d d d d d d d d d d d d d
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process zone do) and micro-crack propagation and merging (see [4]). The, in § 4 
derived, Wu-equation eq.(4.10), then reduces to eq.(4.9), expressed in stresses in 
stead of in stress intensities and, with τu =2σt  for isotropic 

 

 
Figure 2. Limit LEFM behavior, [8], depending on the crack-length d to 

process zone do ratio showing no nonlinearity, thus a J-integral analog is not 
allowed. 

 
matrix stresses, turns to the failure criterion of strength theory for clear wood 

eq.(2.7), when total stresses, in the reinforcement  are accounted. 

                  (2.7) 

It now follows that the general accepted application of the J-integral related 
models [9] to explain eq.(2.4) don’t hold. This also is confirmed by the data given 
in [9]. For instance, Fig .3.27 of [9] of the critical crack tip opening displacements 
CTOD, of steel panels, show a scatter between 0.2 and 2 mm. The Single Edge 
Notched Bend test, SE(B) shows a CTOD scatter (between 12,5 and 87.5 
percentiles) of more than twice the median value. The same tendency follows for 
critical J integral values from SE(B) tests of Fig. 3.28 of [9]. Thus CTOD and J-
integral are not able to represent and explain fracture data, even not at real 
occurring plastic flow. To pass the lack of fit test of Table 1, it is necessary that, 
on first sight, mean data values are very close to theoretical curve, as applies for 
the in § 4 discussed fracture criterion of wood. 

 
 

Rejection of the tree fracture modes singularity 
approach  
 
Discussion of the derivation  
 

Stresses around a crack tip, at distance r and direction θ are regarded to 
follow eq.(3.1) according to the now general accepted [10] fracture mechanics 
derivation [9], [11], [12]:   

( ) ( ) ( ), , ,
2 2 2
I II III

i j i j i j i j i j i j i j
K K Kf s g s h s
r r r

σ θ θ θ
π π π

= + +                     (3.1) 

2

21 y xy

t u

σ τ

σ τ
= +
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where K is stress intensity and sij are compliances This equation is based on 
the idea that a stress field can be divided according to 3 types of associated 
modes of deformation. The crack opening mode I, the sliding mode II and the 
pure torsional mode III. Discussed separately, in literature, is the solution, 
eq.(3.1), for KI =KII =0, thus for loading by KIII alone. Because a comparable 
failure interaction equation for the 3 modes is lacking, only eq.(3.1) for KI and  
KII,, (with KIII  = 0) is regarded. As mentioned in § 1, the solution of the 
biharmonic equation of the Airy stress function, which is necessarily in terms of 
two complex functions, and leads to the different terms of eq.(3.1), is based on  a 
simple, most elementary, form in r and θ, containing 5 constants to adapt to 
boundary conditions and is, with:   z =reiθ  and  eiθ = cos(θ) + i sin(θ): 

  ( ) ( )1 1
1 2f i z f i zλ λα β γ δ+ += + = +                                            (3.2) 

The chosen symmetry conditions, of the displacements, for failure in the 
opening mode I, reduces this solution with two constants β = δ = 0 in eq.(3.2) 
and the two boundary conditions: eq.(3.3), then determine the constants: λ = -0.5  
and  α = 2γ  so that one constant: γ remains, which is arbitrarily assumed to be 
KI. This means that arbitrarily variable (c)1/2 is added, to form a new variable  
σij(c)1/2, without any proof, what is not allowed. The result of the derivation was:  
σ22 = 2γr -1/2f(θ), where γ is proportional to the loading stress p ad infinitum and 
σ22 = σt, the tensile strength, in the ultimate state. Thus: σt = 2p(r)–1/2 f(0) 
determines the critical value of p. The derivation thus is a common derivation of 
strength theory and not of fracture mechanics, because the stress boundary 
conditions at the crack boundary are not satisfied. Thus the strength at the crack 
boundary is not regarded (as done in the right approach of § 4 and § 6). The 
argumentation that adding factor c1/2 follows from dimensional analysis, only 
confirms that the strength at the crack boundary 2c has to be regarded because 
the same dimensional argument does not apply for any other identical analysis of 
strength theory outside the crack.  

The same procedure, as followed for mode I loading, is followed for mode II. 
Now α = γ =0 by chosen anti-symmetry displacement conditions and because λ = 
−0.5, and β and δ are related by the value of KIIc for the only present stress σ12 at 
θ = 0, all constants are known. However, by this choice of separate failure modes, 
eq.(3.1) is not general valid in the ultimate state. Because the biharmonic Airy 
stress function, which is the strain compatibility equation, expressed in stresses, 
eq.(1.1), is different for symmetric and anti-symmetric loading, there is no 
compatibility for the total load sum according to eq.(3.1) and there is a mutual 
exclusion of the terms of eq.(3.1). The first term in KI only applies when KII = 
KIII =0  and the second term in KII only applies when KI  = KIII =0. Eq.(3.1) thus 
is in fact a meaningless stress superposition, of the results of the each excluding 
solutions for alone mode I, alone mode II and alone mode III. Needed for 
compatibility of shear and normal strains, is one Airy stress function (eq.(1.2) or 
eq.(1.8)), for the total load KI plus KII  (KIII = 0) of eq.(3.1). This single 
compatibility for the total load, is applied in § 4 and § 6, as correction of the, not 
compatible tree modes singularity approach. This leads to a real linear elastic 
mixed mode fracture criterion as general solution.  

Because for the derivation of eq.(3.1), the crack is not regarded to be the 
limiting case of  a flat ellipse, it should have been defined by: −c < x < c causing 
two singularities at two end points: x = ± c. By boundary condition eq.(3.3), is 
in fact half an infinite crack length regarded. Point θ=± π, at r = 2c (the crack 
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length) is the opposite crack tip thus also a point of the crack boundary and thus 
is not stress free.   

The, in [11], [12], chosen stress boundary definition: KI = lim(σ22 (2πr)1/2)r→0  
is arbitrary and is trivial, because the product  (σ22 (2πr)1/2)  is independent of r. 
The right limit, where σ22 = σt, the tensile strength, and r = r0 of the crack 
boundary, is KIc =p(πc)1/2, as derived in § 4. The aim of the chosen boundary 
condition, eq.(3.3), is stated in [11], to define a stress free crack surface. This is 
not right because this surface contains the highest tensile stresses near the crack 
tip, from where fracture starts. Therefore this condition:  

  ( ) ( )22 12 0σ θ π σ θ π= ± = = ± =                                                      (3.3)  

has to be regarded to determine the stress free center of the crack. According 
to the exact approach of § 4, this condition, eq.(3.3), is automatically fulfilled due 
to the stress free center of the flat elliptical crack. This also follows from the 
corrected singularity approach of § 6, by applying eq.(3.3), when looking at these 
stresses at  θ =±π. As mentioned, conditions eq.(3.3), determine 2 constants of 
the specific chosen Airy stress function. For a non-trivial solution, then is 
necessary, that: λ = - 1/2, n/2  with n = 0,1,2,... and the derived stress is: 

( ) ( )2 1 , ...i j i j i jr f sλσ λ θ= + ⋅ + .. = ( )1/2 , ...i j i jr f sθ− + .. = ( )1/2 ,i j i jr f sθ− (3.4)  

Thus, only one term, the first term with r – 1/2, applies, satisfying the 
boundary condition of a zero crack tip stress influence at infinitum. Thus the 
stated row solution with positive values of λ does not exist. This also applies for 
the constant (λ=0, n=0), positive or negative term, what means that the T- 
stress [9] of fracture mechanics of metals does not exist and by that, also not the 
Q-parameter, and other related variables.   

In § 2 and § 4 is shown that, the already at the time of Griffith applied, 
maximal tensile stress failure criterion has to be used for extension of micro 
cracks at the fracture process zone.  

This so called “maximum tangential stress” criterion is also applied for the 
derivation of eq.(3.1). However, the tangential direction in polar coordinates is 
not tangential to the elliptic crack boundary. Therefore not the right results are 
obtained. For instance: KIIc < KIc  is found, while normally KIIc >> KIc.. 
(because KIIc ≈ 2 to 10 times KIc for materials, see § 4). Because there always is 
tensile failure in the opening mode, shear sliding thus is due to elastic unloading 
after tensile failure in the opening mode, as confirmed by test specimens, showing 
no shear failure. Thus assumed anti-symmetry conditions don’t apply at failure. 
Application of this maximal tangential tensile stress condition: ∂σtt/∂θ=0, 
∂2σtt/∂θ2<0  on the components of eq.(3.1) leads to [11], [12]:  

( ) ( )( )sin 3cos 1 0I IIK Kθ θ+ −      =                                                        (3.5) 

This suggests, that eq.(3.5) is the mixed mode fracture criterion. However, 
there is no compatibility for combined loading, due to the, per load type, 
different applied Airy stress functions. Therefore, in [11], eq.(3.5) is split again 
into the separate two loading cases to determine the tensile strength for each 
case:  

 ( )sin 0IK θ = , →   ( )sin 0cθ = , →  0cθ =                                  (3.6) 

for mode I loading alone, when KII = 0, and:  
  ( )( )3cos 1 0IIK θ − =                                                                  (3.7) 
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Or: cos(θ) = 1/3 for mode II loading alone, when KI = 0,  giving:  
  0arccos(1/ 3) 70.6cθ = ± = ±  

of which the negative angle θc = −70.6 o  is determining.  
According to the derivation of  eq.(3.1) is this tangential stress:  

ttσ =
3 1 3 3 3 3
cos cos sin sin
4 2 4 2 4 2 4 22 2

I IIK K
r r

θ θ θ θ

π π

⎞ ⎞⎛ ⎛⎞ ⎞ ⎞ ⎞⎛ ⎛ ⎛ ⎛+ + − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎟ ⎟⎜ ⎜
⎝ ⎝ ⎝ ⎝⎠ ⎠ ⎠ ⎠⎝ ⎝⎠ ⎠

           (3.8) 

and the tensile strengths follow from the critical θc values of eq.(3.6) and 
(3.7).  

Then for KII = 0 and θc = 0, the tensile strength is:  

  ttuσ =
02

IcK
rπ

                  (3.9) 

However, mathematically, this also applies for any value of KII  because 
gij(θ = 0)  in eq.(3.1). This is known to be untrue.  

For a critical mode II load, when KI = 0, is, for failure by the tensile strength 
of eq.(3.9): 

 ttuσ =
02

IcK
rπ 0

4 / 3
2

IIcK
rπ
⋅

=   →    3 / 4IIc IcK K= ⋅ 0.87 IcK≈            (3.10)  

This is not a right outcome. The exact solution of § 4 shows KIIc =2 KIc, as 
higher, thus more probable, lower bound, for isotropic material. Thus eq.(3.1) 
does not represent, in the ultimate state, the mixed mode failure criterion.  

To investigate, whether eq.(3.1), as sum of 2 special, opposite, solutions of 
eq.(3.1), may represent, in the ultimate state, a not compatible failure state, 
eq.(3.5) has to be solved as follows:  

Regarding a right angled triangle with longest side of 1 and shortest side of a, 
then, the third side is (1-a2)1/2  and sin(θ) = a, thus cos(θ) = (1-a2)1/2. Then 
eq.(3.5) becomes:  

      

( ) ( )( ) ( )2sin 3cos 1 3 1 1 0I II I IIK K K a K aθ θ+ − = + − − =  →    

( )2 2 29 / 2 / 8 0I II I IIa k k a k k+ − ⋅ − =                                                      (3.11)  

→
( ) ( ) ( )

( )
2

2 2 2
/ / 8 sin

9 / 9 / 9 /
I II I II

c
I II I II I II

K K K Ka
K K K K K K

θ
⎞⎛

= ± + =⎟⎜
⎜ ⎟+ + +⎝ ⎠

     (3.12) 

Thus depending on loading ratio KI / KII, the critical value θc is found, which 
has to be substituted in eq.(3.8). Because in eq.(3.12), the term: 8/{9 + (KI / 
KII)2}  strongly dominates, is the dependence on KI  / KII,, negligible, especially 
for wood where KIc / KIIc = 1/7  in the given example of § 5, giving: 8/(9+0.02) 
= 0.887 ≈ 8/9 = 0.889, thus independent of KI / KII. Thus the sum of 2 each 
excluding solutions exclude together all possible solutions. This excludes eq.(3.1) 
again to be in the ultimate state a lower bound, mixed mode failure criterion. 
However, normally the lower bound, KIIc ≈ KIc  would be chosen, according to 
eq.(3.9) and eq.(3.10). Then, the loading, of both KI ≈ KII  to the ultimate state, 
is a worst loading case. Thus for KI = KII  is:   

0.1 0.01 0.8 0.1 0.9a = ± + = ±                                                     (3.13) 
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The solution: a = sin(θ) = 1 = sin(π/2)  delivers a negative strength by 
eq.(3.8). Thus only negative values of θ and sin(θ) apply, giving a maximal value 
of eq.(3.8), for:  , 
 ( ) ( )sin 0.8 sin 0.9273a θ= = − = − → 0.927cθ = − 0( 53 )=                 

Substitution in eq.(3.8) then gives   
( ) ( ) ( ) ( )0.716 1.0735 1.789 1.789Ic I II I IIK K K K K= + = = →  0.559I II IcK K K= =        (3.14) 

Thus at a loading KI = 0.559 KIc , is KII = 0.559 KIc . This is close to, but 
higher than 0.5 K1c, so that correction by linear interpolation is possible. Where 
eq.(3.9) shows that for mode I alone applies: K1 / KIc ≤ 1, then for mode II alone, 
K1I / KIIc ≤ 1 should apply as correction, providing by interpolation the wanted 
linear (in K1and KII) failure relation like eq.(3.1):  

/ / 1I Ic II IIcK K K K+ = ,                      (3.15) 
This also applies for higher, real occurring values, of KIIc, as is derived in [4], 

and may explain also, the empirical success of applying eq.(3.15). 
 
 

 Discussion of SED-like fracture criteria 

An other applied criterion, to predict crack extension, is the minimum strain 
energy density (SED) criterion, which only applies for an elementary Airy stress 
function solution, which delivers stresses in 1/√r. It could be expected that a 
SED-like criterion applies for brittle materials. Structural materials, however, 
show a higher order fracture energy, showing local “plasticity” to be determining. 
Therefore the same derivation, as done for the SED-equation, is possible, and 
more probable based on a critical distortional energy (CDE) criterion, (see [4] - 
Appendix II) what leads, to the same equation as the SED-equation, with an 
identical form and number of terms, with only difference of numerical constants, 
thus leads to a comparable equation as the SED equation. It is thus probable 
that the critical CDE, and not the minimal SED- principle applies. The exact 
mixed mode failure criterion of § 4, (the Wu-equation) which also directly can be 
derived, based on a critical distortional energy (see [4], § 5.2), is generally 
applicable and thus should replace a SED- or CDE- like criterion.  

In the ultimate state, virtual work and virtual displacements are determining 
and the elastic state then has no influence on this ultimate value. Thus, a first 
order expanded of the compliance (IAW virtual work approach) should be used 
in the ultimate state. The in [10], on page 15 and page 86, prescribed, 
complicated formula for the orthotropic compliance does not fit to the data thus 
should not be used. The measured elementary compliance is right for calculations 
in the main direction. Also an increased compliance value (as applied in the 
Building Codes to adapt to total deformation) is allowed for the “elastic–full 
plastic” ultimate state approach of limit analysis. For compliance differences, the 
elementary linear theory (e.g. beam theory) applies because the triangle bending 
stress diagram and parabolic shear stress diagram represent the first expanded of 
a row expansion of any real, linear or curved, bending stress and shear stress 
division. Only the first expanded should be accounted at virtual changes. It is 
wrong to account for lower order effects, thus, e.g. also is forbidden, to account 
for the lower order clamping effect difference at virtual crack extension of 
notched beams.  
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Exact Lower Bound solution of fracture of the 
isotropic wood matrix  

 
The elliptic crack can be seen as first expanded of any crack form. The 

mathematics of stresses around a flat elliptic hole, (giving by this crack form, the 
highest stresses, and thus the most probable lower bound solution), have been 
discussed by many authors. Since the twentieth, the time of Griffith, many 
specific solutions were obtained based on the Airy stress function. The 
mathematics is given in textbooks and in the referenced literature. Here the 
analysis in elliptical coordinates with the Airy stress function of [7] is followed.  

For the description of the elliptic crack, it is obvious to use elliptic 
coordinates, e.g. for giving the needed stress boundary conditions along the whole 
crack boundary, and the right crack tangent direction, necessary for an exact 
solution.  

As mentioned in § 1, the mathematical solution of the biharmonic Airy stress 
function equation, eq.(1.8) is given in terms of analytic functions  ϕ(z) and  χ(z).. 
Most problems are solved by taking these functions as polynomials or power 
series in z or z-1, where: z = x + iy. Eq.(3.1) is a special example of such solution.  

For the elliptic hole ξ = ξo with semi-axes: a = c cosh(ξo) and b = c sinh(ξo) 
in an infinite region with uniaxial stress p at infinity, inclined at  β  to the major 
axis Ox of the ellipse, (see Fig. 3), the functions  ϕ(z) and χ’(z) = ψ(z) are 
according to [7]:   

( ) ( ) ( ) ( )0 02 2 24 cos(2 )cosh 1 sinhiz pce pc eξ ξ βφ β ζ ζ+= + −                          (4.1) 

( ) ( ) ( ) ( )( ) ( )02
0 04 [cosh 2 cos 2 sinh 2 ]cosz pc e i echξψ ξ β ζ ξ β ζ= − − + − −     (4.2) 

These equations (4.1) and (4.2) satisfy the required conditions at infinity and 
at the surface: ξ =  ξo  of the elliptic hole.  Using eq.(1.22), dz/dζ = ω’(ζ) 
=csinh(ζ), it follows that:  

   ( ) ( ) ( ) ( )0 02 2 24 ' 4 cos 2 1 cothid dz pe p e
d dz

ξ ξ βφ ζ
φ β ζ

ζ
+= = + −                 (4.3)  

The tangential stress σt at the crack boundary ξ = ξo  is simply: σt  = ση  
because there σζ = 0, and using (4.3), and because:  
 ( ) ( )2 ' 'x y z zξ ησ σ σ σ φ φ⎡ ⎤+ = + = +⎣ ⎦ ,→ ( ) ( )0 02 ' 't i iσ φ ξ η φ ξ η= + + − =⎡ ⎤⎣ ⎦

( ) ( ) ( )0 02 2 2
0cos 2 0.5 1 cothipe p e iξ ξ ββ ξ η+= + − + +

( ) ( )02 2
00.5 1 cothip e iξ β ξ η−− − =

( ) ( ) ( ) ( )0
12

0 0cos 2 cosh 2 cos 2 sinh 2pe pξ β ξ η ξ
−

= + − +⎡ ⎤⎣ ⎦  

( ) ( ) ( ) ( ) ( ) ( )0
12

0 0cos 2 sinh 2 sin 2 sin 2 cosh 2 cos 2pe ξ β ξ β η ξ η
−

− + − =⎡ ⎤⎡ ⎤⎣ ⎦⎣ ⎦  

( ) ( ) ( ) ( )( )
( ) ( )

0 0

0

sinh 2 cos 2 exp 2 cos 2

cosh 2 cos 2
p

ξ β ξ β η

ξ η

+ − −
=

−
,                                (4.4) 

This eq.(4.4) can be extended by superposition to two stresses at infinity: p2 
inclined at β to Ox and p1 at  π/2 + β, making any loading combination (σy  τxy) 
possible, according to:  
( ) ( )2 2

1 2sin cosx p pσ β β= + , ( ) ( )2 2
1 2cos siny p pσ β β= + ,   ( ) ( )1 20.5 sin 2xy p pτ β= − −  

giving:  
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( ) ( ) ( ) ( ) ( )( ) ( )
( ) ( )

0 0 0

0

2 sinh 2 2 [(1 sinh 2 )cot 2 exp 2 cos 2 cos 2 ]

cosh 2 cos 2
y xy

t

ecσ ξ τ ξ β ξ β η β
σ

ξ η

+ + − −
=

−
           (4.5) 

For a flat crack, thus for small ξ0 and η this is:  

  
( )0

2 2
0

2 y xy
t

ξ σ ητ
σ

ξ η

−
=

+
                (4.6) 

The maximal tangential stress follows from dσt /dη = 0. Thus: 

   ( )2 2
0 02 0xy yτ ξ η ξ σ η− + =    →    ( )2 2

0 /y y xy xyη ξ σ σ τ τ⎡ ⎤= ± +⎢ ⎥⎣ ⎦
           (4.7) 

 

 
Figure 3. - Stresses in the notch plane Ox [4] 

 
Substitutions in (4.6) gives:  

   ( )2 2
0 t y y xyξ σ σ σ τ= ± +               (4.8) 

This equation can be written:  

( ) ( )( )
22 2 2 2 2

0 t y y xy y xyξ σ σ σ τ σ τ− = ± + = + ,   →   

 
2

2
0 0

1
( ) / 2

xy y

t t

τ σ

ξ σ ξ σ
+ =                    (4.9) 

Transformation from elliptic to polar coordinates, by eq.(6.5) below, gives:     
 ( )0 02 / cosr cξ δ= ⋅ ≈  02 /r c  

and substitution in eq.(4.9) gives:  

   
( )
( ) ( )

2
2

2 2
0 0

1
/ 2 2

xyy I II

Ict IIct

cc K K
Kr Kr

τ πσ π

σ π σ π
+ = + =                       (4.10) 

what should replace the ultimate value of eq.(3.1), while eq.(4.9) with 
constant ξo, for clear wood, gives the ultimate stress, strength criterion.  

Eq.(4.10) is equal to the empirical Wu-equation. Wu noticed a jumping over 
fibres, what is identical to fracture propagation at a small value of δ, which thus 
is neglected.  

Eq.(4.10) further shows that fracture mechanics with constant stress intensity:  
  0 / 2Ic y c tK c rσ π σ π= =              (4.11) 

only applies when ro and σt,, are constant. Thus σt, represents the cohesion 
strength at the crack tip craze and ro is the invariant radius of the constant 
dimensions of the, “fracture process zone” called, craze, at the crack tip. This 
zone clearly represents a kind of crazing with, as such, an invariant size, (which 
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is regarded to be related to a material inhomogenities structure). As shown by 
eq.(6.14), hydrostatic tension occurs at the crack tip:  

/ 2r p c rθσ σ= =      ( 0xyτ = )                                      (4.12) 

what also is equal to the third stress, due to confined contraction, (ν = 0.5) 
what means, that these local stresses may become undetermined high, without 
failure in the isotropic wood matrix (lignin with branched hemicellulose). This 
need not apply for orthotropy, because then, for equal triaxial stresses, the 
strains are not equal and yield remains possible. However, for local compressional 
loading, the strong increase of strength, due to confined dilation, is generally 
known, see [13]. An “unconfined plasticity” calculation method (method of 
characteristic) based on stress spreading was already in the Dutch Code rules. 
The isotropic wood matrix therefore may sustain large stresses without yielding, 
because yield depends on a critical value of the distortional energy. High 
hydrostatic tension is, as well, possible in materials. Measured is e.g. 60 
atmospheres for tension of water in a glass tube. Hydrostatic tension, made 
possible by a stress equalizing, stress spreading effect in wood thus is shown to be 
possible in the fracture process zone and explains the stress increase by the 
spreading effect for tension [4]. Crazing just occurs in regions of high hydrostatic 
tension, or in regions of very localized yielding, which leads to the formation of 
interpenetrating microvoids. At sufficient high tensile stress, the connections 
elongate and break, causing microvoids to grow and coalesce so that cracks begin 
to form. Crazing occurs in polymers, because that material is held together by a 
combination of weaker Van der Waals forces and stronger covalent bonds. 
Sufficient local stress overcomes the Van der Waals force, allowing a narrow gap. 
For wood, also the much stronger hydrogen bonds are involved. Once the slack is 
taken out of  a backbone chain, covalent bonds, holding the chain together, 
hinder further widening of the gap. The gaps then are bridged by fibrils of the 
stretched backbone chain.  

The process of craze growth, prior to cracking, absorbs fracture energy and 
effectively increases the fracture toughness of a polymer. The initial energy 
absorption per square meter in a craze region has been found to be up to several 
hundred times that of the un-crazed region, but quickly decreases and levels off. 
Crazes form at highly stressed regions, thus also at scratches, flaws, stress 
concentrations and molecular inhomogenities. Crazes generally propagate 
perpendicular to the applied tension (as cracks do). Crazing thus is typical for 
amorphous material of the isotropic wood matrix. 

Because the high value of σt and small ro are not known in eq.(4.10), but only 
the product σt (ro)1/2, it is also possible to regard σt as flow stress and ro  as 
elastic-plastic boundary of limit analysis. 

 
 

Empirical verification of the mixed mode failure 
criterion 

 
For isotropic material eq.(4.10) predicts that KIIc = 2 KIc. This is e.g. verified 

for Balsa wood, which is elastic orthotropic, but is extremely light, thus has a 
very low density of reinforcement, and thus is the isotropic matrix determining 
for the strength showing the isotropic strength behavior by KIIc = 2 KIc as 
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verified by the data of Wu on Balsa  (by KIIc ≈ 140 psi.in0.5 and KIc ≈ 60 psi.in0.5; 
(where KIIc ≥ 2 KIc by some hardening in the mode II test, and KIc ≤ KIIc /2  by 
early instability of the tension test). 

The Wu- equation is generally applicable also when σy is a compression stress 
as follows from the measurements. When the compression is high enough to close 
the small notches (σy,cl ≈ 2Gxyξo), τxy has to be replaced by the effective shear 
stress:  

( )*
xy xy y y,clτ = τ +µ σ −σ  ,  

where μ is the friction coefficient, giving:  

( )2*
xyy,cl
2 2

0 t 0 t

1
/ 2

τσ
= +
ξ σ ξ σ

 ,                 (5.1) 

what is fully able to explain fracture by compression perpendicular to the 
notch plane, [4].  

The stress strain relations for orthotropic stresses in denser wood, can be 
given by: 

11 12x x yc cε σ σ= + ;   12 22y x yc cε σ σ= + ;   66xy xycγ τ= .                 

(5.2) 
Substitutions of eq.(5.2):  

2 2

11 122 2x
U U

c c
y x

ε
∂ ∂

= +
∂ ∂

,……. 

 
etc.  in the compatibility condition: 

2 22

2 2
y xyx

y x x y
ε γε ∂ ∂∂

+ =
∂ ∂ ∂ ∂

                (5.3)  

gives:   

  ( )
4 4 4

22 66 12 114 2 2 42 0U U U
c c c c

x x y y
∂ ∂ ∂

+ + + =
∂ ∂ ∂ ∂

             (5.4) 

Wood acts as a reinforced material and can be treated to contain e.g. a shear-
reinforcement and a tensile reinforcement in the main direction. Then, for 
equilibrium of the matrix stresses (expressed in the total stresses) applies:  

2

2
1

x U
n y
σ ∂

=
∂

;   
2

2y
U
x

σ
∂

=
∂

;    
2

6

xy U
n x y
τ ∂

= −
∂ ∂

,               (5.5) 

Inserted in the compatibility equation, eq.(5.3), this should give the isotropic 
Airy tress function. But the same compatibility should apply for matrix and 
reinforcement. Thus inserting the total stresses in eq.(5.3) should give a 
proportional result, given by eq.(5.6):   

   ( )
4 4 4

22 6 66 1 12 1 114 2 2 4(1 ) 0U U U
c n c n c n c

x x y y
∂ ∂ ∂

+ + + + =
∂ ∂ ∂ ∂

               (5.6) 

For the isotropic matrix thus is:  

1 11 22/ 1n c c = ;    ( )6 66 1 12 22( 1 ) / 2n c n c c+ + = ,  

giving:  

   
4 4 4

2 2
4 2 2 42 ( ) 0U U U

U
x x y y

∂ ∂ ∂
+ + =∇ ∇ =

∂ ∂ ∂ ∂
       →                                
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 22
1

11

x

y

Ec
n

c E
= = ;      ( )12 12 22

6 21 12
22 11 66

2 2 xy

y

Gc c c
n

c c c E
ν ν

⎛ ⎞
= − − ⋅ = + + ⋅⎜ ⎟
⎝ ⎠

         (5.7)  

This orthotropic-isotropic transformation of the Airy stress function in the 
elastic state of the reinforcement and the calculation method based on the 
stresses of the matrix makes it possible to use the isotropic solutions of U to find 
the matrix stresses (which should not surmount the matrix strength). In this way 
eq.(4.10) becomes in total orthotropic stresses: 

  
( )
( )

22 2
y y IIiso ort I

2 2 2 2 2 2
0 t 0 t Ic0 t 0 t 6 IIc

KK
1

/ 2 / 2 Kn K

σ στ τ
= + = + = +
ξ σ ξ σξ σ ξ σ

           (5.8) 

and it follows that: 

  IIc 0 t 6
6

Ic 0 t

K n 2n
K / 2

ξ σ
= =
ξ σ

                (5.9) 

  ( )6 21 122 2 2 /xy yn G Eν ν= + + ⋅ =   

= 2(2 + 0.57)/0.67 = 7.7 for Spruce and: 2(2 + 0.48)/0.64 = 7.7 for Douglas Fir 
in TL-direction, according to data of [10]. This is, in this chosen example, 
independent of the densities of respectively 0.37 and 0.50 at a moisture content of 
12 %. Thus, for KIc ≈ 265 kN/m1.5, is KIIc = 7.7x265 = 2041 kN/m1.5in TL-
direction. In RL-direction this factor is 3.3 to 4.4. Thus, when KIIc is the same as 
in the TL-direction, the strength in RL-direction is predicted to be a factor 1.7 to 
2.3 higher with respect to the TL-direction. This however applies at high crack 
velocities (“elastic” failure) and is also dependent on the site of the notch. At 
common loading rates a factor lower than 410/260 = 1.6 is measured [10] and at 
still lower cracking speeds, this strength factor is expected to be about 1 when 
fracture is in the “isotropic” middle lamella. It then thus is independent of the TL 
and RL-direction according to the local stiffness and rigidity values. To know the 
mean influence, it is necessary to analyze fracture strength data dependent on the 
density and the elastic constants of n6. From the rate dependency of the strength 
follows an influence of viscous and viscoelastic processes. This has to be analyzed 
by Deformation Kinetics [14].  

Empirical verification of the above derived theory equation, eq.(5.8), which is 
a Coulomb equation, often called Wu-equation for wood, is not only obtained by 
[5], but also by tests of  [6], done at the TL-system on eastern red spruce at 
normal climate conditions using different kinds of test specimens. The usual finite 
element simulations provided the geometric correction factors, and the stress 
intensity factors. The lack of fit test was performed on these data, at the for 
wood usual variability, assuming the five different, often suggested empirical  

 
Table 1. - Lack of fit values for different failure criteria [6]. Statistical p-value  

Failure criterion p-value  

/ 1I IcK K =   0.0001  

/ / 1I Ic II IIcK K K K+ =  0.0001  

( )2/ / 1I Ic II IIcK K K K+ =  
0.5629 

( )2/ / 1I Ic II IIcK K K K+ =  
0.0784 

( ) ( )2 2/ / 1I Ic II IIcK K K K+ =  
0.0001  
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failure equations of Table 1. The statistical lack of fit values in the table 
show, that only the Wu-failure criterion, the third equation of Table 1, cannot be 
rejected due to lack of fit. The Wu-equation is shown to fit also clear wood and 
timber strength data in [3] and [1], as expected from theory.  

 
 

Corrected Singularity equations, following from 
the exact solution 

 
For correction of eq.(3.1), which gives stresses near the crack tip in polar 

coordinates, it is sufficient to transform the exact equations from elliptical 
coordinates to Cartesian and polar coordinates. The stresses, outside the crack 
boundary follow from the solution of the Airy stress function of § 4. A point near 
the crack tip of ellipse ξ = ξo  with coordinates:     

 ( ) ( )cosh cos ,x c ξ η=    ( ) ( )sinh siny c ξ η= ,                             (6.1) 

with the focus x = c of the ellipse as new origin with Cartesian coordinates X, 
Y, (see Fig. 4) is for small values of ξ and η:  

     ( )2 2 / 2X x c c ξ η= − = − ,     Y y cξη= =                                   (6.2) 

what is in polar coordinates :  

      2 2r X Y= +    ( )cos ,X r θ=  ,   ( )sin ,Y r θ=                            (6.3)  

From (6.2) follows:  

  ( )1/22 2 2 22 / 2 /X Y c r cξ η+ = + =                        (6.4) 

And from (6.2) and (6.4):  

  ( ) ( )( ) ( ) ( )
1/21/2 1/2/ 1 cos / cos / 2r c r cξ θ θ= + =                       (6.5) 

   ( ) ( )( ) ( ) ( )
1/21/2 1/2/ 1 cos / sin / 2r c r cη θ θ= − =              (6.6) 

The quantity α of eq.(1.30) becomes:  

( ) ( )( ) 1cosh 2 cos 2α ξ η
−

= − = ( )2 20.5 / 4c rξ η+ =                      (6.7) 

  

 
Figure 4.- Confocal coordinates of the elliptical crack [4] 

 
The angle δ follows from 

( ) ( ) ( )( ) ( )( ) ( ) ( )2 ' / ' sinh / sinh /i ie i i i i eδ θω ζ ω ζ ξ η ξ η ξ η ξ η= = + − = + − =             (6.8) 

or:   δ =θ/2                                                                               (6.9) 
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Substitution of this in equations (1.27) to (1.29) gives for the flat crack 0 0ξ =    
for loading  by stress p at infinity at an angle β to the crack:   

 r θσ σ+ = ( ) ( )( ) ( ) ( ) ( )cos 2 1 cos 2 sinh 2 sin 2 sin 2p pξ ησ σ β α β ξ β η⎡ ⎤+ = + − −⎣ ⎦ =   

( ) ( )( )( ) ( ) ( )cos 2 1 cos 2 2 2 sin 2p pβ α β ξ η β⎡ ⎤= + − − =⎣ ⎦   

( ) ( ) ( )( ) ( ) ( ) ( )1/2cos 2 / 2 1 cos 2 cos / 2 sin 2 sin / 2p p c rβ β θ β θ⎡ ⎤= + − −⎣ ⎦       (6.10) 

The first term is constant and negligible with respect to the term in ( r) – 1/2.   
Proceeding in this way leads to:  

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )
1/22 2 2 28 / ( ) sin / 2 1 3sin / 2 sin 2 2cos / 2 1 sin / 2 sinrr cp σ θ θ β θ θ β= ⋅ − + ⋅ +         (6.11) 

( ) ( ) ( ) ( ) ( ) ( )
1/22 2 2 28 / ( ) 3sin / 2 cos / 2 sin 2 2cos / 2 sinr cp θσ θ θ β θ β= − ⋅ ⋅ + ⋅                                (6.12) 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )
1/22 2 2 28 / ( ) cos / 2 3cos / 2 2 sin 2 2cos / 2 sin / 2 sinrr cp θτ θ θ β θ θ β= ⋅ − ⋅ + ⋅ ⋅          (6.13) 

For the common mode I test with collinear crack propagation is: β = π /2  
and  θ = 0.  

Then is: (8r/(cp2))1/2σr = 2  and   (8r/(cp2))1/2σθ = 2,   and   τrθ = 0.   Thus 
is:   

  / 2r p c rθσ σ= =               (6.14) 
Showing, by the equal stresses, a local hydrostatic tension. This is discussed 

at eq.(4.12). 
In general, for pure mode I, thus β = π/2, follows: 

( ) ( ) ( )( )1/2 22 / cos / 2 1 sin / 2rr c pσ θ θ= ⋅ +                                 (6.15) 

( ) ( )1/2 32 / cos / 2r c pθσ θ= ⋅                                                       (6.16) 

( ) ( ) ( )1/2 22 / cos / 2 sin / 2rr c pθτ θ θ=                                           (6.17) 

For failure is:  
/ 0θσ θ∂ ∂ = . →   ( ) ( ) ( )1/2 22 / / (3 / 2) cos / 2 sin / 2 0r c pθσ θ θ θ∂ ∂ = − ⋅ = ,  →  0θ =   

 
 
Thus for σθ = σt, the tensile strength, is:  
   2I t Icp c K r Kπ σ π= = =                                               (6.18)           
The loading case, for pure shear S, follows from eq.(6.11) to eq.(6.13) by 

superposition of p = S  at β = π/4  with  p = - S  at  β = 3π/4  giving: 

( ) ( ) ( )( )1/2 22 / sin / 2 1 3sin / 2rr c Sσ θ θ= ⋅ −                               (6.19) 

  ( ) ( ) ( )1/2 22 / 3 sin / 2 cos / 2r c Sθσ θ θ= −            (6.20) 

  ( ) ( ) ( )( )1/2 22 / cos / 2 3cos / 2 2rr c Sθτ θ θ= ⋅ −            (6.21) 

For failure is: ∂σθ / ∂θ = 0.     Thus:   
    ( ) ( ) ( ) ( )1/2 3 22 / / (3 / 2) {cos / 2 2sin / 2 cos / 2 } 0r c Sθσ θ θ θ θ∂ ∂ = − − = , → ( )tan / 2 0.5 0.707θ = =  

Thus:  
 0r rθσ τ≈ ≈   →    ( )22 3 0.577 0.817 1.155tr S c S cπ σ π π= − ⋅ = − ⋅    →    

     2 /1.155 /1.155II t IIc IcS c K r K Kπ π σ− = = = = .                 (6.22) 
The same was found by the derivation of eq.(3.1) in [11], [12], although an 

other Airy stress function was used, which however shows the same periodicity 
by the use of sinus and cosinus functions. The outcome difference with the exact 
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solution of § 4, where KIIc = 2KIc, thus is due to the fact that according to the 
singularity approach in polar coordinates, the direction r·d(θ)  is not tangential 
to the direction of the crack, but cut this crack boundary under an angle of θ /2 
(see Fig. 4). Only for pure mode I, when θ = 0 the right tangential direction is 
given and thus the right outcome for KIc. Thus the singularity approach, in polar 
coordinates gives, by regarding the wrong tangential direction of the crack, a far 
too low value of KIIc, thus should be rejected and not be used. By the following 
the corrected equations will be given and the consequences of application of the 
wrong critical polar tangential stress criterion. Eq.(3.1) becomes, corrected for 
combined loading:  

   ( ) ( ) ( )( )1/2 22 / cos / 2 1 sin / 2rr c pσ θ θ= ⋅ + + ( ) ( )( )2sin / 2 1 3sin / 2S θ θ⋅ −          (6.23) 

  ( ) ( )1/2 32 / cos / 2r c pθσ θ= ( ) ( )23 sin / 2 cos / 2S θ θ−           (6.24) 

   ( ) ( ) ( )1/2 22 / cos / 2 sin / 2rr c pθτ θ θ= + ( ) ( )( )2cos / 2 3cos / 2 2S θ θ⋅ −          (6.25) 

 It follows that: : σθ = τrθ  = 0 for θ = ± π.                   (6.26) 
It thus appears that condition eq.(3.3) is automatically fulfilled by the 

presence of the empty space in the centre of the flat elliptic crack. Thus this 
condition gives not condition of the absence of stress at the crack boundary, but 
gives the zero stresses in the centre of the crack.  

The wrong critical tangential stress follows from  ∂σθ / ∂θ =0  or: 
     ( ) ( ) ( ) ( ) ( )( )2 2 33 sin / 2 cos / 2 3 2cos / 2 sin / 2 cos / 2 0p Sθ θ θ θ θ− + − =     →    

( ) ( ) ( )( )2sin / 2 cos / 2 1 3sin / 2 0p Sθ θ θ+ − =   →                                (6.27) 

( ) ( )( )2tan / 2 1 2tan / 2 0p Sθ θ+ − =   →   

( ) ( ) ( )2tan / 2 / 2 tan / 2 0.5 0p Sθ θ− − =        

        or finally: 

   ( ) ( )2tan / 2 / 4 / 4 0.5p S p Sθ = ± +             (6.28) 

Thus for any load combination  p/S = KI /KII, the angle θ is known and by 
that all stresses are known. Substitution of eq.(6.27) in eq.(6.25) gives: 

  0rθτ = .               (6.29) 
Thus σr  and  σθ  are principal stresses. Thus a local extreme is found.  
Substitution of eq.(6.27) in eq.(6.23) gives:  
  ( )2 / cos / 2rr c pσ θ⋅ =              (6.30) 

Substitution of eq.(6.27) in eq.(6.24) gives, with  σθ = σt  , the tensile strength:  
( ) ( ) ( ) ( )2 22 / cos / 2 / sin / 2 cos / 2 / sin / 2tr c S Sσ θ θ θ θ⋅ = − ⋅ = ⋅           (6.31) 

σθ is the highest stress when  σθ  > σr, thus when:  p > |S|. This is confirmed 
in the ultimate state, by eq.(6.22), for the regarded direction.  

These equations, thus are based on stresses in an oblique direction of θ/2 to 
the elliptic crack boundary direction, which values are lower than the real 
critical, in plane values of § 4.  

The maximal tangential stress criterion thus does not apply for the equations 
in polar coordinates. Only for pure mode I, when θ = 0 the right tangential 
direction is given and thus the right outcome for KIc..  
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Conclusions  
 
Limit Analysis is a prescribed exact approach of Wood Science, what is shown 

to apply also for wood Fracture Mechanics. The linear elastic –full plastic 
approach delivers simple lower bound equilibrium solutions, making judgement of 
results of other methods possible, e.g.  

 According to limit analysis, there is no difference between nonlinear and 
linear elastic (LEFM) fracture mechanics. For both the linear elastic - full plastic 
approach applies. 

 An other interpretation is given of the size effect curve of Bazant. Based on 
the mathematical expression, the curve shows to represent linear elastic fracture 
mechanics  up to limit of strength theory for crazing at zero open crack length. 
The properties of the crazing strength appear to determine and define the 
strength behavior according to the stress intensity factor. Strength theory thus is 
identical to small crack fracture mechanics and thus basic for all fracture 
processes.  

 Stresses in the isotropic wood matrix have to be regarded separately, to 
explain the there, at crazes, possible, extremely high triaxial hydrostatic stress 
and the triaxiality by the  stress spreading effect.  

The derivation of the, only accepted, boundary value solution based on the 
separate 3 failure modes model of Irwin, is discussed what leads to rejection by 
the following remarks:   

 The general solution should, by definition, lead to a mixed mode fracture 
criterion. This is lacking in this singularity approach, what should lead to 
rejection of the method.  

 Condition eq.(3.3) does not mean that there is a stress free crack boundary, 
but indicates  a zero stress at the centre of the crack. In the exact solution § 4, 
and the corrected singularity solution § 6, this condition applies automatically by 
the presence of the crack. The highest stresses occur at the crack boundary 
wherefore failure applies according to the maximal tangential tensile stress 
criterion. The Irwin solution thus does not satisfy the boundary and strength 
condition at the crack boundary. Therefore, the solution is an ultimate strength 
condition of strength theory, which is independent of the crack length 2c. This 
can not be corrected, as done, by simply putting variable c1/2 before the stress in 
the strength solution and regard (σ c1/2) as new variable, without any derivation.   

 Stresses around a crack tip are regarded to follow eq.(3.1) of Irwin according 
to the now general accepted fracture mechanics, boundary value, derivation:  

   ( ) ( ) ( ), , ,
2 2 2
I II III

i j i j i j i j i j i j i j
K K Kf s g s h s
r r r

σ θ θ θ
π π π

= + +            (3.1) 

The applied analysis shows that this is the sum of 3, each excluding, solutions 
in the 3 modes. The first term in KI applies for normal loading only and 
symmetric displacements, thus only when KII = KIII =0  and the second term in 

IIK   applies for shear loading only when KI = KIII, etc. Because the biharmonic 
Airy stress function, is the strain compatibility equation, expressed in stresses, 
eq.(1.1), is different for symmetry or anti-symmetry loading conditions, there is 
no compatibility for the total load sum according to eq.(3.1). The equation thus 
cannot be a linear elastic fracture mechanics equation. Needed for compatibility 
of shear and normal strains is one Airy stress function: eq.(1.2) or eq.(1.8), for 
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the total load KI plus KII  plus KIII of eq.(3.1). This is applied in § 4 and § 6, as 
correction of the, not compatible tree modes singularity approach.  

The so called “maximum tangential stress” criterion is also applied for the 
derivation of eq.(3.1). However, the tangential direction in polar coordinates is 
not tangential to the elliptic first expanded of the crack boundary. Therefore not 
the right results are obtained but e.g. KIIc = 0.87 KIc.,., while the exact solution 
gives KIIc = 2 KIc. The same low value of KIIc = 0.87 KIC  is found for the 
corrected singularity approach in polar coordinates, independent of the applied, 
mutual totally different, Airy stress functions. This is due to the same periodicity 
by the use of sinus and cosinus functions  

This again leads to a necessary rejection of the separate 3 failure modes model 
of Irwin and of all solutions in polar coordinates, based on the maximal 
tangential stress failure criterion.  The corrected, compatible singularity 
equations of § 6 follow from transformation to polar coordinates of the exact limit 
analysis equations of § 4. Of course, also for the corrected equations the applied 
polar maximal tangential stress criterion gives the wrong results.  

The tangential direction of the flat elliptic crack should be regarded which 
represents the first expanded of any crack form and according to limit analysis, 
only application of first expanded terms are allowed. For this reason also beam 
theory has to be used for compliance differences according to the energy 
approach of fracture of beams. The linear bending stress diagram and parabolic 
shear stress diagram are the first expanded of the row expansion of any occurring 
bending and shear stress division.  

It has to be concluded that the right results only can be obtained by a 
description by an elliptic crack and to use elliptic coordinates, e.g. for giving the 
needed stress boundary conditions along the whole crack boundary, and the right 
crack tangent direction, necessary for an exact solution, which is for a flat crack, 
thus for small ξo and η: 

( )0
2 2
0

2 y xy
t

ξ σ ητ
σ

ξ η

−
=

+
                           (4.6) 

The maximal tangential stress follows from dσ /dη = 0, leading to:   

  
2

2
0 0

1
( ) / 2

xy y

t t

τ σ

ξ σ ξ σ
+ =                           (4.9) 

For a constant ξo this is the clear wood ultimate stress criterion of strength 
theory.  

Transformation from elliptic to polar coordinates, by eq.(6.5), gives:  
    ( )0 02 / cosr cξ δ= ⋅ ≈  02 /r c  

and substitution, in equation above, gives:  

   
( )
( ) ( )

2
2

2 2
0 0

1
/ 2 2

xyy I II

Ict IIct

cc K K
Kr Kr

τ πσ π

σ π σ π
+ = + =    

what should replace the ultimate value of eq.(3.1) 
This last equation further shows that fracture mechanics with constant stress 

intensity:   
  0 / 2Ic y c tK c rσ π σ π= =  
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only applies when 0r    and tσ  , are constant. Thus σt represents the cohesion 

strength of the crack tip crazes and 0r  is the invariant radius of the constant 

dimensions of the, “fracture process zone” (based on the material inhomogeneity 
structure of the craze, at the crack tip). 

The, in [11], [12], chosen stress boundary definition: KI =lim r →0 (σ22·(2πr)1/2) 
is arbitrary and is trivial, because the product  (σ22·(2πr)1/2) is independent of r.  

Hydrostatic tension, made possible by stress equalizing stress spreading effect 
in wood thus is shown to be possible in the fracture process zone and explains the 
hydrostatic stress effect for tension. It is probable that hydrostatic stress is 
generally caused by the stress spreading mechanism, in all materials, as is visual 
by the necked cross section, at flow, of a ductile iron rod.   
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